Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. 1995

C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
Department of Internal Medicine, Philipps University of Marburg, Germany.

The nutrient-dependent glucagon-like peptide-1 (7-36) amide (GLP-1) release was studied in comparison to the glucose-dependent insulin-releasing polypeptide (GIP) response in 10 healthy volunteers each undergoing various protocols. Plasma samples were saved up to 120 min after challenges by oral, intravenous or intraduodenal administration of nutrients. Basal plasma-GLP-1 concentrations ranged between 0.4 and 1.4 pM, maximal postprandial GLP-1 levels peaked between 10 and 12 pM. Intravenous glucose (25 g i.v.) did not change basal GLP-1 levels. Oral administration of glucose (50 g) induced a biphasic GLP-1 release peaking at 30-60 min and a biphasic GIP release peaking at 5 and 45 min. This increase paralleled the secretion of insulin. Oral galactose (100 g) and amino acids (25 g) also induced a rapid plasma GLP-1 response. After fat (67 g corn oil) a strong and long-lasting (> 120 min) increase of GLP-1 plasma levels occurred. When a mixed liquid meal was given (6 g soybean oil, 5 g casein, 13 g glucose) immunoreactive (IR)-GLP-1 rapidly increased and peaked after 5 min with declining levels after 30 min. In response to an intraduodenal infusion of a small glucose load (5.34 g within 120 min) a rapid, short-lasting GLP-1 response occurred whereas plasma GIP and insulin levels remained unaltered. Luminal perfusion of an isolated vascularly perfused rat ileum with a polydiet induced a rapid rise of portally released IR-GLP-1 which was followed by a sustained release. Glucose evoked sodium-dependently a sharp increase of IR-GLP-1 levels followed by a plateau release. The intraluminal infusion of a mixture of amino acids or fat was without any effect on IR-GLP-1. We hypothesize that in contrast to GIP the GLP-1 release from L cells is triggered by nervous reflexes, by putative humoral factor(s) being released from the upper small intestine in addition to nutrient stimuli acting at the luminal surface of the gut.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011498 Protein Precursors Precursors, Protein
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004763 Glucagon-Like Peptides Peptides derived from proglucagon which is also the precursor of pancreatic GLUCAGON. Despite expression of proglucagon in multiple tissues, the major production site of glucagon-like peptides (GLPs) is the INTESTINAL L CELLS. GLPs include glucagon-like peptide 1, glucagon-like peptide 2, and the various truncated forms. Enteroglucagon,Enteroglucagons,Glucagon-Like Peptide,Glucagon-Like Polypeptide,Gut Glucagon,Glucagon-Like Polypeptides,Glucagon Like Peptide,Glucagon Like Peptides,Glucagon Like Polypeptide,Glucagon Like Polypeptides,Glucagon, Gut,Peptide, Glucagon-Like,Polypeptide, Glucagon-Like
D005223 Fats The glyceryl esters of a fatty acid, or of a mixture of fatty acids. They are generally odorless, colorless, and tasteless if pure, but they may be flavored according to origin. Fats are insoluble in water, soluble in most organic solvents. They occur in animal and vegetable tissue and are generally obtained by boiling or by extraction under pressure. They are important in the diet (DIETARY FATS) as a source of energy. (Grant & Hackh's Chemical Dictionary, 5th ed)
D005502 Food Substances taken in by the body to provide nourishment. Foods
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose

Related Publications

C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
February 2010, Current opinion in endocrinology, diabetes, and obesity,
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
June 1995, Endocrine reviews,
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
April 2016, Journal of diabetes investigation,
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
April 1995, Hepatology (Baltimore, Md.),
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
September 2016, Angewandte Chemie (International ed. in English),
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
July 1989, FEBS letters,
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
March 2024, World journal of diabetes,
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
April 2016, Journal of diabetes investigation,
C Herrmann, and R Göke, and G Richter, and H C Fehmann, and R Arnold, and B Göke
April 2005, Diabetes,
Copied contents to your clipboard!