Presence of tumor necrosis factor alpha and interleukin-6 in renal mesangial cells of lupus nephritis patients. 1995

D Malide, and P Russo, and M Bendayan
Department of Anatomy, Université de Montréal, Québec, Canada.

Tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) antigenic sites were shown within the resident glomerular mesangial cells of lupus nephritis patients applying the colloidal gold immunocytochemical approach at the electron microscopic level. Using specific polyclonal antibodies against human recombinant (hr) TNF alpha and hrIL-6 in conjunction with the protein A-gold complex, TNF alpha and IL-6 were shown in the mesangial cells, being particularly associated with the membranes of the rough endoplasmic reticulum. In addition, IL-6 also was present in glomerular immune deposits and occasionally in glomerular epithelial cells. In normal renal tissue the TNF alpha and IL-6 immunoreactivities were undetectable. The specific presence of TNF alpha and IL-6 in pathological specimens was shown by several control experiments. Thus, our results offered morphological support that TNF alpha and IL-6 might play a role in human lupus nephritis. The data showed their synthesis by the mesangial cells and their possible participation in the progression to chronicity of the renal injury on secretion.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008181 Lupus Nephritis Glomerulonephritis associated with autoimmune disease SYSTEMIC LUPUS ERYTHEMATOSUS. Lupus nephritis is histologically classified into 6 classes: class I - normal glomeruli, class II - pure mesangial alterations, class III - focal segmental glomerulonephritis, class IV - diffuse glomerulonephritis, class V - diffuse membranous glomerulonephritis, and class VI - advanced sclerosing glomerulonephritis (The World Health Organization classification 1982). Glomerulonephritis, Lupus,Lupus Glomerulonephritis,Nephritis, Lupus,Glomerulonephritides, Lupus,Lupus Glomerulonephritides,Lupus Nephritides,Nephritides, Lupus
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon

Related Publications

D Malide, and P Russo, and M Bendayan
March 1992, Kidney international,
D Malide, and P Russo, and M Bendayan
February 1990, Kidney international,
D Malide, and P Russo, and M Bendayan
November 2008, Clinical immunology (Orlando, Fla.),
D Malide, and P Russo, and M Bendayan
October 1990, FEBS letters,
D Malide, and P Russo, and M Bendayan
May 2010, Renal failure,
D Malide, and P Russo, and M Bendayan
September 1998, Kidney international. Supplement,
D Malide, and P Russo, and M Bendayan
February 2010, The journal of obstetrics and gynaecology research,
D Malide, and P Russo, and M Bendayan
March 2003, The Journal of biological chemistry,
D Malide, and P Russo, and M Bendayan
May 2002, British journal of cancer,
Copied contents to your clipboard!