Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. 1995

L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
Human Genome Center, Lawrence Berkeley Laboratory, Berkeley, California 94720.

Transfer of budding Candida albicans yeast cells from the rich, complex medium YEPD to the defined tissue culture medium RPMI 1640 (RPMI) at 37 degrees C and 5% CO2 causes rapid onset of hyphal induction. Among the genes induced under these conditions are hyphal-specific genes as well as genes expressed in response to changes in temperature, CO2 and specific media components. A cDNA library constructed from cells incubated for 20 min in RPMI was differentially screened with yeast (YEPD)- and hyphal (RPMI)-specific probes resulting in identification of a gene expressed in response to culture conditions but not regulated by the yeast-hyphal transition. The deduced gene product displays significant identity to Saccharomyces cerevisiae alpha-agglutinin, encoded by AG alpha 1, an adhesion glycoprotein that mediates mating of haploid cells. The presence of this gene in C. albicans is curious since the organism has not been observed to undergo meiosis. We designate the C. albicans gene ALS1 (for agglutinin-like sequence). While the N- and C-termini of the predicted 1260-amino-acid ALS1 protein resemble those of the 650-amino-acid AG alpha 1, ALS1 contains a central domain of tandem repeats consisting of a highly conserved 36-amino-acid sequence not present in AG alpha 1. These repeats are also present on the nucleotide level as a highly conserved 108 bp motif. Southern and Northern blot analyses indicate a family of C. albicans genes that contain the tandem repeat motif; at least one gene in addition to ALS1 is expressed under conditions similar to those for ALS1 expression. Genomic Southern blots from several C. albicans isolates indicate that the number of copies of the tandem repeat element in ALS1 differs across strains and, in some cases, between ALS1 alleles in the same strain, suggesting a strain-dependent variability in ALS1 protein size. Potential roles for the ALS1 protein are discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000072235 Mating Factor A protein also known as pheromone mating factor that occurs on the surfaces of organisms such as yeast and fungi. Mating Hormone,Pheromone a-Factor,Pheromone alpha-Factor,Sexual Agglutination Factor,alpha-Agglutinin (Fungal),alpha-Factor (Fungal),alpha-Mating Factor,Agglutination Factor, Sexual,Factor, Mating,Factor, Sexual Agglutination,Factor, alpha-Mating,Hormone, Mating,Pheromone a Factor,Pheromone alpha Factor,a-Factor, Pheromone,alpha Mating Factor,alpha-Factor, Pheromone
D000373 Agglutinins A substance that makes particles (such as bacteria or cells) stick together to form a clump or a mass. Agglutinin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
April 1998, Infection and immunity,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
January 1991, Applied and environmental microbiology,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
May 2001, Journal of bacteriology,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
January 2014, Eukaryotic cell,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
May 2002, Current genetics,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
July 1995, Letters in applied microbiology,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
January 1985, Molecular & general genetics : MGG,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
February 1957, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
July 1996, Current genetics,
L L Hoyer, and S Scherer, and A R Shatzman, and G P Livi
May 2013, FEMS yeast research,
Copied contents to your clipboard!