Ascorbic acid prevents lipid peroxidation and oxidative damage of proteins in guinea pig extrahepatic tissue microsomes. 1995

C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
Department of Biochemistry, University College of Science, Calcutta, India.

It has recently been indicated that in the absence of free iron, NADPH initiates oxidative damage of proteins in guinea pig liver microsomes and also lipid peroxidation and protein damage in cardiac microsomes and that ascorbic acid specifically inhibits both the lipid peroxidation and protein damage [Mukhopadhyay CK, Chatterjee IB: J Biol Chem 269: 13390-13397, 1994; Mukhopadhyay M et al.: Mol Cell Biochem 126: 69-75, 1993]. In this paper we demonstrate that Fe(III)-independent NADPH-initiated lipid peroxidation and oxidative damage of proteins occur in the microsomes of all the extrahepatic tissues including lung, kidney, adrenal gland and brain and that both the lipid peroxidation and protein damage are specifically prevented by ascorbic acid. We further demonstrate that when NADPH is replaced by O2 as the electron donor, the O2-initiated lipid peroxidation and protein damage are also inhibited by ascorbic acid.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
September 1993, Molecular and cellular biochemistry,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
August 1980, Biochimica et biophysica acta,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
January 1981, Biochimica et biophysica acta,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
May 1965, Archives of biochemistry and biophysics,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
December 1994, Pharmacology & toxicology,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
April 1990, Archives of biochemistry and biophysics,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
October 1995, Research communications in molecular pathology and pharmacology,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
December 1954, Bollettino della Societa italiana di biologia sperimentale,
C K Mukhopadhyay, and M K Ghosh, and I B Chatterjee
January 1999, In vivo (Athens, Greece),
Copied contents to your clipboard!