Binding sites of the Epstein-Barr virus and C3d receptor (CR2, CD21) for its three intracellular ligands, the p53 anti-oncoprotein, the p68 calcium binding protein and the nuclear p120 ribonucleoprotein. 1995

M Barel, and M Balbo, and A Gauffre, and R Frade
INSERM U.354, Centre INSERM, Hôpital Saint-Antoine, Paris, France.

Epstein-Barr virus/C3d receptor (CR2, CD21) interacts with three intracellular proteins: the p53 anti-oncoprotein expressed in human B lymphoma cells, the p68 calcium binding protein expressed in normal B lymphocytes and the nuclear p120 ribonucleoprotein (RNP). We previously demonstrated that p53 and p68 interacted with the intracytoplasmic carboxy-terminal domain of CR2. To analyse the amino acid sequence of CR2 binding sites for p53 and p68, we synthesized different peptides whose sequences were derived from this carboxy-terminal domain. Thus, CR2 bound to p53 and p68 through two distinct binding sites localized on the N-terminal and on the central part of its carboxy-terminal domain, characterized by the amino acid sequences of KHRERNYYTD and KEAFHLEARE, respectively. CR2 site reacting with the nuclear p120RNP was determined using either anti-CR2 mAb directed against its extracellular domain or pep34, pep14/SCR3 and pep14/SCR4, synthetic peptides whose sequences corresponded to the intracellular 34 amino acid domain or to sites of the extracellular domain of CR2, respectively. Data support that CR2 interacts with p120RNP through the DEGYRLQGPPSSRC amino acid sequence of its extracellular SCR4 domain. Furthermore, phosphorylation of CR2 inhibits its interaction with the nuclear p120RNP. Binding of CR2, through its intracellular and extracellular domains, with the p53 oncoprotein and p120RNP, respectively, and the co-localization of these three proteins on nuclear interchromatin fibrils, suggest that CR2 could act as a crosslinker between these two nuclear proteins to regulate their functions.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M Barel, and M Balbo, and A Gauffre, and R Frade
July 1990, The Journal of biological chemistry,
M Barel, and M Balbo, and A Gauffre, and R Frade
January 1995, Microbiology and immunology,
M Barel, and M Balbo, and A Gauffre, and R Frade
June 1986, Journal of immunology (Baltimore, Md. : 1950),
M Barel, and M Balbo, and A Gauffre, and R Frade
April 1988, Journal of virology,
M Barel, and M Balbo, and A Gauffre, and R Frade
August 2002, Proceedings of the National Academy of Sciences of the United States of America,
M Barel, and M Balbo, and A Gauffre, and R Frade
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
M Barel, and M Balbo, and A Gauffre, and R Frade
December 2007, The Journal of biological chemistry,
M Barel, and M Balbo, and A Gauffre, and R Frade
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!