Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. 1995

A Kirkwood, and H K Lee, and M F Bear
Howard Hughes Medical Institute, Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.

Long-term potentiation (LTP) is a lasting enhancement of excitatory synaptic transmission that follows specific patterns of electrical stimulation. Although the mechanism of LTP has been intensively studied, particularly in the hippocampus, its significance for normal brain function remains unproven. It has been proposed that LTP-like mechanisms may contribute to naturally occurring, experience-dependent synaptic modifications in the visual cortex. The formation of normal binocular connections within the visual cortex requires simultaneous input from both eyes during a postnatal critical period that can be delayed by rearing animals in complete darkness. To explore the role of LTP in this experience-dependent maturation process, we induced LTP in visual cortical slices taken at different ages from light-reared and dark-reared rats. Susceptibility to LTP coincides with the critical period and, like the critical period, can be prolonged by rearing animals in darkness. These findings support the hypothesis that LTP reflects a normal mechanism of experience-dependent synaptic modification in the developing mammalian brain.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008029 Lighting The illumination of an environment and the arrangement of lights to achieve an effect or optimal visibility. Its application is in domestic or in public settings and in medical and non-medical environments. Illumination
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D003624 Darkness The absence of light. Darknesses
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

A Kirkwood, and H K Lee, and M F Bear
January 2014, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
A Kirkwood, and H K Lee, and M F Bear
November 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Kirkwood, and H K Lee, and M F Bear
June 1996, Nature,
A Kirkwood, and H K Lee, and M F Bear
February 2004, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A Kirkwood, and H K Lee, and M F Bear
January 1988, Journal of neurophysiology,
A Kirkwood, and H K Lee, and M F Bear
June 1992, Neurochemistry international,
A Kirkwood, and H K Lee, and M F Bear
January 2002, Nature,
A Kirkwood, and H K Lee, and M F Bear
September 2016, Journal of physiology, Paris,
A Kirkwood, and H K Lee, and M F Bear
December 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Kirkwood, and H K Lee, and M F Bear
June 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!