Intraoperative monitoring of motor function by magnetic motor evoked potentials. 1995

W Y Lee, and W Y Hou, and L H Yang, and S M Lin
Division of Neurosurgery, National Taiwan University Medical College and Hospital, Taipei, Republic of China.

Under etomidate anesthesia, motor evoked potentials produced by magnetic stimulation were successfully recorded from 10 thenar muscles and 10 anterior tibial muscles of eight patients who had undergone surgery on the medulla oblongata and the cervical and thoracic spinal cords. Recordings taken before placing the neural tissue at risk were assessed for variability in amplitude and latency. The lower limit in amplitude was approximately one-third (25-43%) of the baseline. The latencies were more difficult to monitor than were the amplitudes. The latency variations were 2.56 +/- 0.50 milliseconds for the hand and 6.84 +/- 1.37 milliseconds for the leg. During surgery, the unilateral recordings of two patients were transiently lost but partially recovered after a pause in the operation. No obvious postoperative weaknesses in the corresponding limbs occurred. One patient, who showed a permanent loss of unilateral recording, had transient monoplegia with a complete recovery. None of the remaining five patients who had amplitudes larger than one-third of the baseline at the end of the operation had additional motor deficits. Our conclusions are that under etomidate anesthesia, the magnetic motor evoked potentials can be convenient and reliable monitors of motor function, that changes in the amplitude may be superior to those in the latency for intraoperative warning, that the criterion for potential neural damage under magnetic motor evoked potential monitoring might be an amplitude reduction of two-thirds of the control value, and that the magnetic stimulation seems to be more sensitive than the electrical stimulation in the monitoring of motor function and also allows more time and opportunities for the motor function to recover.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

W Y Lee, and W Y Hou, and L H Yang, and S M Lin
December 1994, Anesthesia and analgesia,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
May 1999, Archives italiennes de biologie,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
September 2016, Anesthesiology clinics,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
March 2013, No shinkei geka. Neurological surgery,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
February 2019, Indian journal of anaesthesia,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
January 2004, Journal of anesthesia,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
April 2012, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
September 2015, World neurosurgery,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
April 2011, Journal of neurosurgery. Pediatrics,
W Y Lee, and W Y Hou, and L H Yang, and S M Lin
August 2014, Journal of Korean Neurosurgical Society,
Copied contents to your clipboard!