D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain. 1995

G S Robertson, and M Jian
Department of Pharmacology, Faculty of Medicine, University of Ottawa, Ontario, Canada.

Alterations in dopaminergic neurotransmission have profound effects on neuronal expression of the putative activity marker, Fos, in both the dorsal and ventral striatum. Stimulants such as D-amphetamine and cocaine increase Fos-like immunoreactivity by enhancing the activation of D1 dopamine receptors. In contrast, neuroleptics such as haloperidol and raclopride increase Fos-like immunoreactivity by blocking striatal D2 dopamine receptors. In the dorsal striatum, D1 receptor stimulation elevates Fos-like immunoreactivity predominantly in neurons projecting to the midbrain (substantia nigra), whereas D2 receptor antagonism enhances Fos-like immunoreactivity principally in neurons projecting to the pallidum (globus pallidus). These findings are consistent with the proposal that D1 receptors are located chiefly on striatonigral neurons, whereas D2 receptors reside mainly on striatopallidal neurons. Since the nucleus accumbens (largest component of the ventral striatum) also sends projections to the midbrain (ventral tegmental area and substantia nigra) and pallidum (ventral pallidum), the present study utilized retrograde tract-tracing techniques to determine if there was a similar segregation of D1 agonist- and D2 antagonist-induced Fos-like immunoreactivity in these accumbal projections. In addition, we examined whether these relationships were the same in the core and shell regions of the nucleus accumbens. Like the dorsal striatum, D1 agonists (D-amphetamine and CY 208-243), but not D2 antagonists (haloperidol and clozapine), increased Fos-like immunoreactivity in accumbal neurons projecting to the midbrain (ventral tegmental area and substantia nigra). Also like the dorsal striatum, D2 antagonist-induced Fos-like immunoreactivity was located preferentially in accumbal neurons projecting to the pallidum (ventral pallidum). However, unlike the dorsal striatum, where the vast majority of neurons which display D1 agonist-induced Fos-like immunoreactivity project to the midbrain, nearly 50% of those neurons in the nucleus accumbens which were Fos-immunoreactive after D-amphetamine or CY 208-243 projected to the ventral pallidum. Thus, a similar number of accumbal neurons which expressed D1 agonist-induced Fos-like immunoreactivity were retrogradely labelled from the midbrain and ventral pallidum. Accumbal projections to the midbrain and ventral pallidum were retrogradely labelled with different retrograde tracers in order to determine the degree of collateralization between these pathways. Approximately 20% of retrogradely labelled neurons displayed both tracers, indicating that collateralization and damage to fibres of passage could not account for all of those cases in which D1 agonist-induced Fos-like immunoreactivity was detected in accumbal neurons projecting to the ventral pallidum.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D003024 Clozapine A tricylic dibenzodiazepine, classified as an atypical antipsychotic agent. It binds several types of central nervous system receptors, and displays a unique pharmacological profile. Clozapine is a serotonin antagonist, with strong binding to 5-HT 2A/2C receptor subtype. It also displays strong affinity to several dopaminergic receptors, but shows only weak antagonism at the dopamine D2 receptor, a receptor commonly thought to modulate neuroleptic activity. Agranulocytosis is a major adverse effect associated with administration of this agent. Clozaril,Leponex
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1

Related Publications

G S Robertson, and M Jian
April 2008, Behavioral neuroscience,
G S Robertson, and M Jian
August 2014, Behavioural brain research,
G S Robertson, and M Jian
March 2017, Behavioural brain research,
Copied contents to your clipboard!