Cellular localization and differential distribution of GABAA receptor subunit proteins and messenger RNAs within hypothalamic magnocellular neurons. 1995

V S Fenelon, and W Sieghart, and A E Herbison
Department of Neurobiology, AFRC Babraham Institute, Cambridge, U.K.

The inhibitory neurotransmitter GABA plays an important role in regulating the activity of magnocellular oxytocin and vasopressin neurons located in the supraoptic and paraventricular nuclei through occupancy of GABAA receptors. However, the GABAA receptor is a hetero-oligomeric protein comprised of different subunits and the subunit types expressed in a given receptor complex appear critical for its sensitivity to GABA, benzodiazepines and/or steroids. Thus, in order to understand fully the GABAergic control of oxytocin and vasopressin secretion, definition of the GABAA receptors synthesized by magnocellular neurons in the supraoptic and paraventricular nuclei is required. In the supraoptic nucleus, antibodies directed against the alpha 1, alpha 2 and beta 2/3 subunits of the GABAA receptor revealed similar strong antigen distribution on all magnocellular neurons. Using sequential double-immunoperoxidase staining, immunoreactivity for all three subunits was observed on both oxytocin and vasopressin neurons of the supraoptic nucleus. In contrast, only alpha 2 subunit immunoreactivity was detected on the cell bodies of oxytocin and vasopressin neurons in the paraventricular nucleus. No sex differences were detected. In situ hybridization experiments using 35S-labelled oligonucleotides showed that all supraoptic neurons expressed alpha 1, alpha 2 and beta 2 subunit messenger RNA transcripts while magnocellular neurons in the paraventricular nucleus were only enriched in alpha 2 subunit messenger RNA. Quantitative analysis showed that the expression of alpha 1 and beta 2 subunit messenger RNAs in the paraventricular nucleus was half that observed in the supraoptic nucleus while expression of beta 3 subunit messenger RNA was very low in both nuclei. These results show that all oxytocin and vasopressin neurons located in the supraoptic nucleus synthesize and express alpha 1, alpha 2 and beta 2 subunits of the GABAA receptor while those in the paraventricular nucleus are only immunoreactive for the alpha 2 subunit. These observations suggest, therefore, that at least two pharmacologically distinct GABAA receptor isoforms exist on supraoptic neurons and that these are different to those expressed by paraventricular magnocellular cells. Thus, in addition to providing a definition of the subunits likely to form specific GABAA receptor isoforms on magnocellular neurons, this study gives direct evidence for GABAA receptor heterogeneity between supraoptic and paraventricular neurons, but not between oxytocin and vasopressin cells.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

V S Fenelon, and W Sieghart, and A E Herbison
August 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
V S Fenelon, and W Sieghart, and A E Herbison
June 1998, Neuroscience,
V S Fenelon, and W Sieghart, and A E Herbison
January 2012, Endocrine regulations,
V S Fenelon, and W Sieghart, and A E Herbison
May 1986, Cell,
V S Fenelon, and W Sieghart, and A E Herbison
February 1975, Biochemical and biophysical research communications,
V S Fenelon, and W Sieghart, and A E Herbison
April 1995, Neuroscience,
Copied contents to your clipboard!