Direct projections from the anterior pretectal nucleus to the ventral medulla oblongata in rats. 1995

A Zagon, and M G Terenzi, and M H Roberts
Department of Physiology, University of Wales, College of Cardiff, U.K.

The anterior pretectal nucleus has recently been implicated in the descending modulation of nociception. Electrical stimulation of the nucleus was found to reduce the nociceptive responses of deep dorsal horn neurons and to inhibit spinally integrated withdrawal reflexes. It is believed that at least part of the descending inhibitory effects of the anterior pretectal nucleus are mediated by reticulospinal cells of the ventrolateral medulla. The purpose of the present study was to trace the direct medullary projections of the anterior pretectal nucleus, to describe their topographical organization and to reveal the chemical nature of some of their putative target cells. The connections were studied using anterograde tract-tracing with Phaseolus vulgaris leucoagglutinin. Direct projections from the anterior pretectal nucleus to the ipsilateral rostral ventral medulla were found in all cases. A dense innervation of the dorsal inferior olive, the gigantocellular reticular nucleus pars ventralis and pars alpha and the ventral pontine reticular nucleus was found from all aspects of the anterior pretectal nucleus. Descending labelled terminals were also observed in the gigantocellular reticular nucleus proper and, laterally, in the lateral paragigantocellular nucleus and in the region of the A5 noradrenergic cell group. A relatively lower density of labelled terminals was noted in the medullary raphe nuclei and in the rostroventrolateral reticular nucleus. Following tract-tracer injections into five distinct subregions of the anterior pretectal nucleus, the topographical organization of the projection was examined and the relatively highest density and most widespread projection was found to originate from the caudoventral part of the anterior pretectal nucleus. A combined tract-tracing and immunolabelling study revealed that some of the descending, labelled terminals were in close proximity of tyrosine hydroxylase-immunoreactive dendrites in the C1 and A5 cell groups. Some labelled fibres were also noted among the serotonin-immunoreactive cells in the lateral extension of the B3 cell population. The existence of direct projections to the ventral medulla and pons correlates well with physiological data which showed that the descending, antinociceptive effects of the anterior pretectal nucleus are relayed via the rostral ventrolateral medulla. The data are also in keeping with pharmacological studies that suggested the role of catecholaminergic cells in the mediation of these descending effects. It is proposed that the rostral ventral medullary projections provide a path through which antinociceptive effects of the anterior pretectal nucleus are mediated to the spinal cord.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

A Zagon, and M G Terenzi, and M H Roberts
January 1989, Journal fur Hirnforschung,
A Zagon, and M G Terenzi, and M H Roberts
February 2009, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
A Zagon, and M G Terenzi, and M H Roberts
May 1986, The Journal of comparative neurology,
A Zagon, and M G Terenzi, and M H Roberts
August 1997, The Journal of comparative neurology,
A Zagon, and M G Terenzi, and M H Roberts
September 1992, Brain research,
A Zagon, and M G Terenzi, and M H Roberts
June 2015, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!