Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. 1995

S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.

We report the establishment of a human fetal osteoblast cell line derived from biopsies obtained from a spontaneous miscarriage. Primary cultures isolated from fetal tissue were transfected with a gene coding for a temperature-sensitive mutant (tsA58) of SV40 large T antigen along with a gene coding for neomycin (G418) resistance. Individual neomycin resistant colonies were screened for alkaline phosphatase (AP)-specific staining. The clone with the highest AP level, hFOB 1.19, was examined further for other osteoblast phenotypic markers. Incubation of hFOB cells at the permissive temperature (33.5 degrees C) resulted in rapid cell division, whereas little or no cell division occurred at the restrictive temperature (39.5 degrees C). Both AP activity and osteocalcin (OC) secretion increased in a dose-dependent manner following dihydroxyvitamin D3 (1,25-D3) treatment when cultured at either temperature. However, AP and 1,25-D3-induced OC levels were elevated in confluent hFOB cells cultured at 39.5 degrees C compared with 33.5 degrees C. Treatment of hFOB cells with 1-34 parathyroid hormone (PTH) resulted in an increase in cAMP levels. Upon reaching confluence, hFOB cultures went through programmed differentiation and formed mineralized nodules as observed by von Kossa staining. Further, immunostaining of postconfluent, differentiated hFOB cells showed that high levels of osteopontin, osteonectin, bone sialoprotein, and type I collagen were expressed. Therefore, the clonal cell line hFOB 1.19 provides a homogeneous, rapidly proliferating model system to study certain stages of human osteoblast differentiation.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002113 Calcification, Physiologic Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts. Bone Mineralization,Calcification, Physiological,Physiologic Calcification,Mineralization, Bone,Physiological Calcification
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
September 1997, Journal of cellular biochemistry,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
June 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
May 2014, The Journal of clinical investigation,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
January 2016, Journal of neurochemistry,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
September 2004, Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
August 2021, Experimental cell research,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
January 2020, Cell transplantation,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
November 1998, The American journal of physiology,
S A Harris, and R J Enger, and B L Riggs, and T C Spelsberg
July 1997, Molecular reproduction and development,
Copied contents to your clipboard!