Connective tissue and repair in the heart. Potential regulatory mechanisms. 1995

K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
Department of Internal Medicine, University of Missouri Health Sciences Center, Columbia 65212, USA.

The heart is composed of highly differentiated cardiac myocytes, which constitute parenchyma, and stroma or connective tissue. Fibrillar collagen turnover in the heart and its valve leaflets, in particular, is dynamic and essential to tissue repair. Emerging evidence further suggests connective tissue is a metabolically active entity, where peptide hormones are generated and degraded and, in turn, these peptides regulate collagen turnover. This concept arose from quantitative in vitro autoradiography using an iodinated derivative of lisinopril (125I-351A) as ligand to localize angiotensin converting enzyme (ACE) binding density within the heart. A heterogeneous distribution was found: low-density ACE binding within atria and ventricles; high ACE binding density at sites of high collagen turnover, such as valve leaflets, adventitia, and fibrous tissue of diverse etiologic origins. ACE-producing cells at these latter sites were identified by monoclonal ACE antibody. They included valvular interstitial cells (VIC) and fibroblast-like cells each of which also contained alpha-smooth muscle actin and the transcript for type I collagen (in situ hybridization). Substrate utilization in cultured VIC was found to include angiotensin I and bradykinin. Angiotensin II and bradykinin receptor-ligand binding was observed in VIC and at fibrous tissue sites. Connective tissue ACE is independent of circulating angiotensin II. In vivo, fibrous tissue formation is attenuated by ACE inhibition or antagonism of AT1 receptor. Angiotensin II and bradykinin are stimulatory and inhibitory, respectively, to cultured adult cardiac fibroblast collagen synthesis suggesting a paradigm of reciprocal regulation to fibroblast collagen turnover. Stroma and its cellular constituents represent a dynamic metabolic entity that regulates its own peptide hormone composition and turnover of fibrillar collagen. These findings may provide insights that could be used to advantage to either promote or forestall fibrous tissue formation depending on the nature of cardiovascular disease.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D005355 Fibrosis Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury. Cirrhosis,Fibroses
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000803 Angiotensin I A decapeptide that is cleaved from precursor angiotensinogen by RENIN. Angiotensin I has limited biological activity. It is converted to angiotensin II, a potent vasoconstrictor, after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME.

Related Publications

K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
August 2000, Cardiology clinics,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
July 1996, Cardiovascular research,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
February 1975, Archives d'ophtalmologie et revue generale d'ophtalmologie,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
March 2015, Matrix biology : journal of the International Society for Matrix Biology,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
January 1975, JAMA,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
March 2009, Differentiation; research in biological diversity,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
January 1969, Duodecim; laaketieteellinen aikakauskirja,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
January 2018, Frontiers in immunology,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
January 1995, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society,
K T Weber, and Y Sun, and L C Katwa, and J P Cleutjens, and G Zhou
November 1974, Science (New York, N.Y.),
Copied contents to your clipboard!