Evaluation of respiratory effects of thermal decomposition products following single and repeated exposures of guinea pigs. 1995

K Detwiler-Okabayashi, and M Schaper
University of Pittsburgh, Graduate School of Public Health, Center for Environmental and Occupational Health and Toxicology, PA 15238, USA.

Groups of guinea pigs were exposed to the thermal decomposition products (TDP) released from acrylonitrile butadiene styrene (ABS), polypropylene-polyethylene copolymer (CP), polypropylene homopolymer (HP), or plasticized polyvinyl chloride (PVC). In single 50-min exposures to the TDP, guinea pigs exhibited sensory irritation, coughing, and airways constriction. Significant decreases in respiratory frequency (f) occurred during TDP exposure which were magnified during CO2 challenge conducted immediately post-exposure. For each resin, it was possible to demonstrate a linear relationship between the logarithm of heated mass and the percent decrease in f during CO2 challenge. From these relationships, the mass of each resin producing a 50% decrease in f during CO2 challenge (RD50 mass) was obtained. RD50 masses of 2744, 25.2, 16.0, and 6.7 g were obtained for ABS, CP, HP, and PVC, respectively. Thus, the relative potency of their TDP was PVC > CP approximately HP >> ABS. Using the RD50 mass of each resin, guinea pigs were exposed to TDP for 50 min/day on 5 consecutive days. These repeated exposures also resulted in sensory irritation, coughing, and airways constriction. However, deaths occurred during exposures, and there was evidence of cumulative respiratory effects, and slower recoveries among survivors. Data obtained in guinea pigs were compared to a previous study with mice exposed to the TDP of the same four resins (Schaper et al. 1994). On the basis of heated mass, mice were 20-500 times more sensitive to the acute respiratory effects of TDP than guinea pigs. Thus, the exposure limits of 0.63, 0.11, 0.08, and 0.35 mg/m3 proposed by Schaper et al. (1994) on the basis of particulates released from ABS, CP, HP and PVC should prevent not only irritation, but also possible coughing, and airways constriction in workers.

UI MeSH Term Description Entries
D008297 Male Males
D010969 Plastics Polymeric materials (usually organic) of large molecular weight which can be shaped by flow. Plastic usually refers to the final product with fillers, plasticizers, pigments, and stabilizers included (versus the resin, the homogeneous polymeric starting material). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Plastic
D011095 Polyethylenes Synthetic thermoplastics that are tough, flexible, inert, and resistant to chemicals and electrical current. They are often used as biocompatible materials for prostheses and implants. Ethylene Polymers,Ethene Homopolymers,Homopolymers, Ethene,Polymers, Ethylene
D011126 Polypropylenes Propylene or propene polymers. Thermoplastics that can be extruded into fibers, films or solid forms. They are used as a copolymer in plastics, especially polyethylene. The fibers are used for fabrics, filters and surgical sutures. Propene Polymers,Propylene Polymers,Hostalen,Marlex,Marlex Polypropylene,Polypro,Polypropylene,Prolene,Polymers, Propene,Polymers, Propylene,Polypropylene, Marlex
D011137 Polystyrenes Polymerized forms of styrene used as a biocompatible material, especially in dentistry. They are thermoplastic and are used as insulators, for injection molding and casting, as sheets, plates, rods, rigid forms and beads. Polystyrol,Polystyrene,Polystyrols
D011143 Polyvinyl Chloride A polyvinyl resin used extensively in the manufacture of plastics, including medical devices, tubing, and other packaging. It is also used as a rubber substitute. Chloroethylene Polymer,Polychloroethylene,Vinyl Chloride Polymer,Chloroethylene Homopolymer,Geon,PVC,Ultron,Viaflex,Vinylite,Chloride, Polyvinyl,Homopolymer, Chloroethylene,Polymer, Chloroethylene,Polymer, Vinyl Chloride
D012117 Resins, Synthetic Polymers of high molecular weight which at some stage are capable of being molded and then harden to form useful components. Dental Resins,Dental Resin,Resin, Dental,Resin, Synthetic,Resins, Dental,Synthetic Resin,Synthetic Resins
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

K Detwiler-Okabayashi, and M Schaper
May 1988, Fundamental and applied toxicology : official journal of the Society of Toxicology,
K Detwiler-Okabayashi, and M Schaper
May 1992, Aviation, space, and environmental medicine,
K Detwiler-Okabayashi, and M Schaper
December 1982, Environmental research,
K Detwiler-Okabayashi, and M Schaper
January 1994, Radiatsionnaia biologiia, radioecologiia,
K Detwiler-Okabayashi, and M Schaper
July 1989, The Annals of physiological anthropology = Seiri Jinruigaku Kenkyukai kaishi,
K Detwiler-Okabayashi, and M Schaper
December 2013, The Journal of chemical physics,
K Detwiler-Okabayashi, and M Schaper
April 1983, Medicine, science, and the law,
Copied contents to your clipboard!