Electron transfer from cytochrome c to 8-azido-ATP-modified cytochrome c oxidase. 1995

J Lin, and S Wu, and S I Chan
A. A. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125, USA.

Bovine heart cytochrome c oxidase (CcO) has been modified by 8-azido-adenosine 5'-triphosphate (8-azido-ATP), and the electron-transfer activity from ferrocytochrome c to the modified CcO under physiological ionic strengths has been studied by the laser flash photolysis technique with 5-deazariboflavin and EDTA as the electron donor. The kinetics of intermolecular electron transfer between the redox protein partners was shown to be reduced significantly. In addition, there is significant decrease in the binding affinity of the cytochrome c to the oxidase upon 8-azido-ATP modification. The 8-azido-ATP-modified CcO exhibited 50% of the intracomplex electron-transfer rate (ket) and 56% of the association constant (Ka) normally observed between cytochrome c and native CcO under otherwise identical conditions. Since the effective electron transfer rate constant is the product of ket and Ka under nonsaturation conditions, the overall electron-transfer rate has been curtailed by over a factor of 2. Similar observations have been noted with the native CcO in the presence of 3 mM ATP. In contrast, the redox potential of neither CuA nor cytochrome a was altered upon 8-azido-ATP modification or in the presence of 3 mM ATP. Also, no gross structural changes at either the CuA or the cytochrome a site were noted, as evidenced by a lack of any spectral perturbations in the EPR signals from both of these centers. We conclude that ATP modulates the electron transfer from cytochrome c to CcO by interacting with the CcO and altering allosterically the docking. In this manner, ATP can affect the branching of the electron input from ferrocytochrome c to cytochrome a and CuA.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Lin, and S Wu, and S I Chan
September 2000, European journal of biochemistry,
J Lin, and S Wu, and S I Chan
August 1988, Journal of bioenergetics and biomembranes,
J Lin, and S Wu, and S I Chan
October 2011, Biochimica et biophysica acta,
J Lin, and S Wu, and S I Chan
March 1995, Biochemistry,
J Lin, and S Wu, and S I Chan
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
J Lin, and S Wu, and S I Chan
June 1995, Journal of bioenergetics and biomembranes,
J Lin, and S Wu, and S I Chan
May 1996, Biochemistry,
J Lin, and S Wu, and S I Chan
January 1998, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!