Threshold fluctuations in an N sodium channel model of the node of Ranvier. 1995

J T Rubinstein
Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA.

Computer simulations of stochastic single-channel open-close kinetics are applied to an N sodium channel model of a node of Ranvier. Up to 32,000 voltage-gated sodium channels have been simulated with modified amphibian sodium channel kinetics. Poststimulus time histograms are obtained with 1000 monophasic pulse stimuli, and measurements are made of changes in the relative spread of threshold (RS) with changes in the model parameters. RS is found to be invariant with pulse durations from 100 microseconds to 3 ms. RS is approximately of inverse proportion to square-root of N. It decreases with increasing temperature and is dependent on passive electrical properties of the membrane as well as the single-channel conductance. The simulated RS and its independence of pulse duration is consistent with experimental results from the literature. Thus, the microscopic fluctuations of single, voltage-sensitive sodium channels in the amphibian peripheral node of Ranvier are sufficient to account for the macroscopic fluctuation if threshold to electrical stimulation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000663 Amphibians VERTEBRATES belonging to the class amphibia such as frogs, toads, newts and salamanders that live in a semiaquatic environment. Amphibia,Amphibian
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D013269 Stochastic Processes Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables. Process, Stochastic,Stochastic Process,Processes, Stochastic

Related Publications

J T Rubinstein
October 1980, The Journal of physiology,
J T Rubinstein
January 1982, Quarterly journal of experimental physiology (Cambridge, England),
J T Rubinstein
January 1975, Pflugers Archiv : European journal of physiology,
J T Rubinstein
April 1984, Biophysical journal,
Copied contents to your clipboard!