Anesthetics alter the physical and functional properties of the Ca-ATPase in cardiac sarcoplasmic reticulum. 1995

B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455, USA.

We have studied the effects of the local anesthetic lidocaine, and the general anesthetic halothane, on the function and oligomeric state of the CA-ATPase in cardiac sarcoplasmic reticulum (SR). Oligomeric changes were detected by time-resolved phosphorescence anisotropy (TPA). Lidocaine inhibited and aggregated the Ca-ATPase in cardiac SR. Micromolar calcium or 0.5 M lithium chloride protected against lidocaine-induced inhibition, indicating that electrostatic interactions are essential to lidocaine inhibition of the Ca-ATPase. The phospholamban (PLB) antibody 2D12, which mimics PLB phosphorylation, had no effect on lidocaine inhibition of the Ca-ATPase in cardiac SR. Inhibition and aggregation of the Ca-ATPase in cardiac SR occurred at lower concentrations of lidocaine than necessary to inhibit and aggregate the Ca-ATPase in skeletal SR, suggesting that the cardiac isoform of the enzyme has a higher affinity for lidocaine. Halothane inhibited and aggregated the Ca-ATPase in cardiac SR. Both inhibition and aggregation of the Ca-ATPase by halothane were much greater in the presence of PLB antibody or when PLB was phosphorylated, indicating a protective effect of PLB on halothane-induced inhibition and aggregation. The effects of halothane on cardiac SR are opposite from the effects of halothane observed in skeletal SR, where halothane activates and dissociates the Ca-ATPase. These results underscore the crucial role of protein-protein interactions on Ca-ATPase regulation and anesthetic perturbation of cardiac SR.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic

Related Publications

B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
April 1986, Biulleten' eksperimental'noi biologii i meditsiny,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
June 1992, Biochimica et biophysica acta,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
December 1992, Seikagaku. The Journal of Japanese Biochemical Society,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
June 1993, Nihon rinsho. Japanese journal of clinical medicine,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
July 1995, The Biochemical journal,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
July 1998, Protein expression and purification,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
October 1991, The American journal of physiology,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
December 2013, Naunyn-Schmiedeberg's archives of pharmacology,
B S Karon, and L M Geddis, and H Kutchai, and D D Thomas
October 1991, Circulation research,
Copied contents to your clipboard!