Tandem mass spectrometry analysis of synthetic opioid peptide analogs. 1995

J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, University of Tennessee, Memphis 38163, USA.

Five synthetic opioid peptides that were designed to have specific opioid receptor-binding properties were studied by low energy collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). The MS/MS data are required for the analysis of those peptides in ovine plasma in a study to determine the placental transfer of the peptide to the fetus. The synthetic enkephalin-related peptides were: Tyr-D-Arg-Phe-Lys-NH2, (DALDA), N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH, (ICI 174,864), Tyr-D-Thr-Gly-Phe-Leu-Thr, (DTLET), Tyr-D-Pen-Gly-Phe-D-Pen-OH, (DPDPE), and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, (CTAP). Liquid secondary ion mass spectrometry (LSIMS) was used for sample desorption-ionization, and a hybrid (E1BE2qQ) tandem mass spectrometer was used to collect the product-ion spectra. A protonated molecule ion, [M + H]+, was observed for each peptide. Amino acid sequence-determining fragment ion were produced by CID and collected by MS/MS for the three linear peptides, and also for the two disulfide-bond-containing peptides in their unreduced and dithiothreitol (DTT)-reduced forms. The detection level for the [M + H]+ ion of DTLET was ca. 3 pmol; and the stabilities of the CTAP and ICI analogs in plasma were studied.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
September 2009, Journal of mass spectrometry : JMS,
J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
April 2005, BioTechniques,
J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
June 1992, Journal of pharmaceutical sciences,
J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
January 1996, Mass spectrometry reviews,
J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
January 2015, Methods in molecular biology (Clifton, N.J.),
J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
January 2019, Methods in molecular biology (Clifton, N.J.),
J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
January 2014, PloS one,
J L Tseng, and L Yan, and G H Fridland, and D M Desiderio
September 1989, Rapid communications in mass spectrometry : RCM,
Copied contents to your clipboard!