Development of excitatory and inhibitory postsynaptic potentials in the rat neocortex. 1995

B Sutor, and H J Luhmann
Institute of Physiology, University of Munich, Germany.

The postnatal development of synaptic potentials in the rat neocortex is characterized by the sequential appearance of functional excitatory and inhibitory synapses. Morphological and electrophysiological studies provided evidence that at early stages of development, pyramidal cells are extensively coupled to each other, presumably via gap junctions. Thus, immature neurons are able to communicate through pathways that are not available or only weakly expressed in the mature neocortex. During the very early postnatal period, excitatory synaptic inputs prevail. Excitatory postsynaptic potentials (EPSPs) are characteristically long in duration and show high sensitivity to frequent stimulation. Although spontaneous inhibitory postsynaptic potentials (IPSPs) and mature responses to exogenously applied gamma-aminobutyric acid (GABA) have been described during the first postnatal week, evoked IPSPs do not develop before postnatal day 10 (P10). During the period of maximum synaptogenesis (P11 to P20), GABA-mediated synaptic inhibition develops and pyramidal cells respond to afferent activation with efficient EPSPs and IPSPs. These postsynaptic potentials gradually mature during the late postnatal period. The delayed development of synaptic inhibition in the neocortex simultaneously promotes synaptic plasticity while increasing seizure susceptibility. On the one hand, the functional lack of synaptic inhibition during early stages of development enables a period of enhanced neuronal activity and augmented synaptic plasticity necessary to form proper synaptic connections. On the other hand, the absence of inhibitory control over excitatory processes increases the vulnerability of the developing neocortex to seizure activity during postnatal ontogenesis.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017459 Receptors, Amino Acid Cell surface proteins that bind amino acids and trigger changes which influence the behavior of cells. Glutamate receptors are the most common receptors for fast excitatory synaptic transmission in the vertebrate central nervous system, and GAMMA-AMINOBUTYRIC ACID and glycine receptors are the most common receptors for fast inhibition. Amino Acid Receptors,Receptor, Amino Acid,Receptors, Amino Acids,Amino Acid Receptor,Amino Acids Receptors
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

B Sutor, and H J Luhmann
January 1993, Journal of neurophysiology,
B Sutor, and H J Luhmann
January 1970, Federation proceedings,
B Sutor, and H J Luhmann
January 1988, Experimental brain research,
Copied contents to your clipboard!