Impaired insulin signaling in skeletal muscles from transgenic mice expressing kinase-deficient insulin receptors. 1995

P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
Charles A. Dana Research Institute, Boston, Massachusetts, USA.

Transgenic mice which overexpress kinase-deficient human insulin receptors in muscle were used to study the relationship between insulin receptor tyrosine kinase and the in vivo activation of several downstream signaling pathways. Intravenous insulin stimulated insulin receptor tyrosine kinase activity by 7-fold in control muscle versus < or = 1.5-fold in muscle from transgenic mice. Similarly, insulin failed to stimulate tyrosyl phosphorylation of receptor beta-subunits or insulin receptor substrate 1 (IRS-1) in transgenic muscle. Insulin substantially stimulated IRS-1-associated phosphatidylinositol (PI) 3-kinase in control versus absent stimulation in transgenic muscles. In contrast, insulin-like growth factor 1 modestly stimulated PI 3-kinase in both control and transgenic muscle. The effects of insulin to stimulate p42 mitogen-activated protein kinase and c-fos mRNA expression were also markedly impaired in transgenic muscle. Specific immunoprecipitation of human receptors followed by measurement of residual insulin receptors suggested the presence of hybrid mouse-human heterodimers. In contrast, negligible hybrid formation involving insulin-like growth factor 1 receptors was evident. We conclude that (i) transgenic expression of kinase-defective insulin receptors exerts dominant-negative effects at the level of receptor auto-phosphorylation and kinase activation; (ii) insulin receptor tyrosine kinase activity is required for in vivo insulin-stimulated IRS-1 phosphorylation, IRS-1-associated PI 3-kinase activation, phosphorylation of mitogen-activated protein kinase, and c-fos gene induction in skeletal muscle; (iii) hybrid receptor formation is likely to contribute to the in vivo dominant-negative effects of kinase-defective receptor expression.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
November 1997, Biochemical and biophysical research communications,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
July 1991, Diabetes,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
January 2009, Islets,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
August 1993, Cell,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
June 1995, Endocrinology,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
December 1999, Diabetologia,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
July 2004, The Journal of clinical investigation,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
May 1999, The Journal of physiology,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
December 2002, Pharmacology & toxicology,
P Y Chang, and L J Goodyear, and H Benecke, and J S Markuns, and D E Moller
November 2004, Journal of autoimmune diseases,
Copied contents to your clipboard!