Mechanisms of selective long-term potentiation of excitatory synapses in stratum oriens/alveus interneurons of rat hippocampal slices. 1995

M Ouardouz, and J C Lacaille
Centre de Recherche en Sciences Neurologiques, Université de Montréal, Quebec, Canada.

1. We investigated long-term potentiation (LTP) of synaptic transmission in different populations of interneurons in the CA1 region of rat hippocampal slices using whole cell recordings. We elicited excitatory postsynaptic currents (EPSCs) in interneurons located in stratum oriens near the alveus (O/A) or in stratum lacunosum-moleculare near the stratum radiatum border (L-M) by electrical stimulation of nearby axons in stratum oriens and radiatum, respectively. 2. High-frequency stimulation (100 Hz, 1 s) of axons in conjunction with postsynaptic depolarization (to -20 mV) increased the peak amplitude of test EPSCs elicited at -80 mV in O/A interneurons. The mean peak amplitude of EPSCs was significantly potentiated relative to the control period at 10 min (39 +/- 7% increase, mean +/- SE; n = 11 cells) and 30 min (30 +/- 1% increase; n = 5 cells) after tetanization. Similar stimulation did not produce potentiation of EPSCs in L-M interneurons (n = 7 cells). 3. This selective LTP in O/A interneurons was reversibly blocked by the N-methyl-D-aspartate receptor antagonist (+/-)2-amino-5-phosphonopentanoic acid (AP-5). Tetanization in the presence of 25 microM AP-5 did not increase the amplitude of EPSCs (8 cells). After washout of AP-5 (4 cells), a second tetanization resulted in long-term potentiation of EPSCs. 4. LTP was dependent on the activation of metabotropic glutamate receptors. The peak amplitude of EPSCs was not increased 5-10 or 15-20 min after tetanization during bath application of the metabotropic glutamate receptor antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (500 microM) (n = 5 cells). 5. Inclusion of the Ca2+ chelator 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA; 25 mM) in the patch pipette blocked LTP in O/A interneurons. In five cells recorded with BAPTA-containing electrodes, the mean peak amplitude was not significantly increased after tetanization. Thus a rise in postsynaptic intracellular Ca2+ appeared necessary for the induction of LTP in these interneurons. 6. Incubation of slices with the inhibitor of nitric oxide synthase N omega-nitro-L-arginine methyl ester (100 microM) before and throughout the recording session also blocked the increase in EPSC amplitude at 5-10 min (5 cells) and 15-20 min (3 cells) after tetanization. NO synthesis may therefore be necessary for LTP in O/A interneurons. 7. These results suggest that LTP of excitatory synapses is selectively produced in O/A but not L-M interneurons, and that this LTP shares similar characteristics with LTP in hippocampal CA1 pyramidal cells.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008297 Male Males
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017470 Receptors, Glutamate Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases. Excitatory Amino Acid Receptors,Glutamate Receptors,Receptors, Excitatory Amino Acid,Excitatory Amino Acid Receptor,Glutamate Receptor,Receptor, Glutamate
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term

Related Publications

M Ouardouz, and J C Lacaille
April 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Ouardouz, and J C Lacaille
April 2001, Journal of neurophysiology,
M Ouardouz, and J C Lacaille
December 2009, Journal of neurophysiology,
M Ouardouz, and J C Lacaille
January 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Ouardouz, and J C Lacaille
July 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!