Neoplastic and pharmacological influence on the permeability of an in vitro blood-brain barrier. 1995

P A Grabb, and M R Gilbert
Department of Neurology, University of Pittsburgh School of Medicine, Pennsylvania, USA.

The authors investigated the effects of glioma cells and pharmacological agents on the permeability of an in vitro blood-brain barrier (BBB) to determine the following: 1) whether malignant glia increase endothelial cell permeability; 2) how glucocorticoids affect endothelial cell permeability in the presence and absence of malignant glia; and 3) whether inhibiting phospholipase A2, the enzyme that releases arachidonic acid from membrane phospholipids, would reduce any malignant glioma-induced increase in endothelial cell permeability. Primary cultures of rat brain capillary endothelium were grown on porous membranes; below the membrane, C6, 9L rat glioma. T98G human glioblastoma, or no cells (control) were cocultured. Dexamethasone (0.1 microM), bromophenacyl bromide (1.0 microM), a phospholipase A2 inhibitor, or nothing was added to culture media 72 hours prior to assaying the rat brain capillary endothelium permeability. Permeability was measured as the flux of radiolabeled sucrose across the rat brain capillary endothelium monolayer and then calculated as an effective permeability coefficient (Pe). When neither dexamethasone nor bromophenacyl bromide was present, C6 cells reduced the Pe significantly (p < 0.05), whereas 9L and T98G cells increased Pe significantly (p < 0.05) relative to rat brain capillary endothelium only (control). Dexamethasone reduced Pe significantly for all cell preparations (p < 0.05). The 9L and T98G cell preparations coincubated with dexamethasone had the lowest Pe of all cell preparations. The Pe was not affected in any cell preparation by coincubation with bromophenacyl bromide (p > 0.45). These in vitro BBB experiments showed that: 1) malignant glia, such as 9L and T98G cells, increase Pe whereas C6 cells probably provide an astrocytic influence by reducing Pe; 2) dexamethasone provided significant BBB "tightening" effects both in the presence and absence of glioma cells; 3) the in vivo BBB is actively made more permeable by malignant glia and not simply because of a lack of astrocytic induction; 4) tumor or endothelial phospholipase A2 activity is probably not responsible for glioma-induced increased in BBB permeability; and 5) this model is useful for testing potential agents for BBB protection and for studying the pathophysiology of tumor-induced BBB disruption.

UI MeSH Term Description Entries
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D000098 Acetophenones Derivatives of the simplest aromatic ketone acetophenone (of general formula C6H5C(O)CH3).
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P A Grabb, and M R Gilbert
March 2012, Molecular nutrition & food research,
P A Grabb, and M R Gilbert
January 1959, Klinische Monatsblatter fur Augenheilkunde und fur augenarztliche Fortbildung,
P A Grabb, and M R Gilbert
October 2016, Environmental toxicology and pharmacology,
P A Grabb, and M R Gilbert
January 1959, Acta biologica et medica Germanica,
P A Grabb, and M R Gilbert
January 1983, Clinical and experimental neurology,
P A Grabb, and M R Gilbert
January 2022, Methods in molecular biology (Clifton, N.J.),
P A Grabb, and M R Gilbert
June 2018, Archives of biochemistry and biophysics,
P A Grabb, and M R Gilbert
November 2001, Neuroscience letters,
Copied contents to your clipboard!