Reactions of reducing xenobiotics with oxymyoglobin. Formation of metmyoglobin, ferryl myoglobin and free radicals: an electron spin resonance and chemiluminescence study. 1995

K Stolze, and H Nohl
Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Austria.

The oxygen-haem centre of oxymyoglobin reacts with reducing xenobiotics such as hydroxylamines and phenols with the concomitant formation of metmyoglobin and oxidation of the respective xenobiotic. Metmyoglobin formation rates were measured by visible spectroscopy with xenobiotic concentrations ranging from 100 microM to 30 mM. Analogous to previous results obtained with oxyhaemoglobin, the first step in the reaction of hydroxylamines with oxymyoglobin leads to the formation of the one-electron oxidation product of hydroxylamine, a nitroxyl radical detectable by electron spin resonance. A variety of paramagnetic secondary products were also found. The terminal oxidation product of hydroxylamine and hydroxyurea was the myoglobin-nitric oxide complex, one showing similar spectral characteristics to the analogous haemoglobin-nitric oxide adduct found in our previous experiments. On the other hand, the amount of low-spin ferric complexes obtained from metmyoglobin and an excess of the respective hydroxylamine was considerably lower than the corresponding results with methaemoglobin. A second important reaction intermediate was the compound I-type ferryl haem-species detected by a recently-published chemiluminescence assay. Partial spectral resolution of the emitted light using a set of cut-off filters indicated that maximum light emission occurred above 600 nm, most probably involving excited porphyrin states. The intensity of oxymyoglobin-related light emission was considerably higher than that reported earlier with oxyhaemoglobin. This indicates a difference in the excitation mechanism which leads to the formation of the compound I-type ferry haem species.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008786 Metmyoglobin Myoglobin which is in the oxidized ferric or hemin form. The oxidation causes a change in color from red to brown. Ferrimyoglobin
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D015262 Xenobiotics Chemical substances that are foreign to the biological system. They include naturally occurring compounds, drugs, environmental agents, carcinogens, insecticides, etc. Xenobiotic
D058085 Iron Compounds Organic and inorganic compounds that contain iron as an integral part of the molecule. Compounds, Iron

Related Publications

K Stolze, and H Nohl
September 1986, Federation proceedings,
K Stolze, and H Nohl
March 1973, The Journal of physical chemistry,
K Stolze, and H Nohl
January 2002, Skin pharmacology and applied skin physiology,
K Stolze, and H Nohl
September 1992, Science in China. Series B, Chemistry, life sciences & earth sciences,
K Stolze, and H Nohl
March 1967, Journal of the American Chemical Society,
K Stolze, and H Nohl
April 1990, Chemistry and physics of lipids,
K Stolze, and H Nohl
January 1985, Archives of environmental health,
Copied contents to your clipboard!