Binding of methylmercuric hydroxide by 4-thiouridine of N-formylmethionyl-tRNA from Escherichia coli. 1976

R J Maguire

The binding of methylmercuric hydroxide to N-formylmethionyl-tRNA of Escherichia coli has been studied. In the absence of magnesium ions, methylmercury binds strongly to 4-thiouridine in the eighth position from the 5' end: the dissociation constant is (1.0 +/- 0.2) X 10(-5) M, and the forward and reverse rate constants for binding are (5.3 +/- 0.5) X 10(4) M-1S-1 and 0.38 +/- 0.02S-1, respectively. The presence of Mg2+ prevents this binding, presumably through some conformational change induced in the structure of N-formylmethionyl-tRNA.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008767 Methylmercury Compounds Organic compounds in which mercury is attached to a methyl group. Methyl Mercury Compounds,Compounds, Methyl Mercury,Compounds, Methylmercury,Mercury Compounds, Methyl
D009239 N-Formylmethionine Effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eucaryotic cells. N Formylmethionine,Formylmethionine, N
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

R J Maguire
July 1979, European journal of biochemistry,
R J Maguire
September 1979, Analytical biochemistry,
R J Maguire
May 1972, Biochemical and biophysical research communications,
R J Maguire
May 1971, Journal of molecular biology,
R J Maguire
October 1977, Archives of biochemistry and biophysics,
Copied contents to your clipboard!