Restriction/modification in Streptococcus thermophilus: isolation and characterization of a type II restriction endonuclease Sth455I. 1993

C Guimont, and P Henry, and G Linden
Laboratory of Applied Biochemistry-INRA Associated Laboratory, Faculty of Sciences, University of Nancy I, Vandoeuvre-les-Nancy, France.

Streptococcus thermophilus strain CNRZ 455 produces a type II restriction endonuclease designated Sth455I. This enzyme was isolated from cell extracts by anionic and cationic exchange chromatography. This yielded an enzyme preparation free of non-specific nucleases. The optimal reaction conditions for Sth455I are: MgCl2, 30 mM; pH range, 8-9; incubation temperature, 37-42 degrees C; and a high NaCl concentration, 100-200 mM. The results of single- and double-digestion experiments indicates that Sth455I is an isoschizomer of BstNI and EcoRII showing different sensitivity to methylation. The enzyme exhibits restriction activity on the DNA of three bacteriophages of S. thermophilus and no activity on the phage lytic for strain CNRZ 455. The restriction/modification system associated with this strain is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013291 Streptococcus A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II
D015280 DNA Restriction-Modification Enzymes Systems consisting of two enzymes, a modification methylase and a restriction endonuclease. They are closely related in their specificity and protect the DNA of a given bacterial species. The methylase adds methyl groups to adenine or cytosine residues in the same target sequence that constitutes the restriction enzyme binding site. The methylation renders the target site resistant to restriction, thereby protecting DNA against cleavage. DNA Restriction Modification Enzyme,DNA Restriction-Modification Enzyme,Restriction Modification System,Restriction-Modification System,Restriction-Modification Systems,DNA Restriction Modification Enzymes,Restriction Modification Systems,Enzyme, DNA Restriction-Modification,Enzymes, DNA Restriction-Modification,Modification System, Restriction,Modification Systems, Restriction,Restriction-Modification Enzyme, DNA,Restriction-Modification Enzymes, DNA,System, Restriction Modification,System, Restriction-Modification,Systems, Restriction Modification,Systems, Restriction-Modification
D017108 Streptococcus Phages Viruses whose host is Streptococcus. Streptococcal Phages,Streptococcus Bacteriophages,Bacteriophage, Streptococcus,Bacteriophages, Streptococcus,Phage, Streptococcal,Phage, Streptococcus,Phages, Streptococcal,Phages, Streptococcus,Streptococcal Phage,Streptococcus Bacteriophage,Streptococcus Phage

Related Publications

C Guimont, and P Henry, and G Linden
February 1990, FEMS microbiology letters,
C Guimont, and P Henry, and G Linden
June 2005, Applied biochemistry and biotechnology,
C Guimont, and P Henry, and G Linden
January 1998, Applied biochemistry and biotechnology,
C Guimont, and P Henry, and G Linden
November 1990, Nucleic acids research,
C Guimont, and P Henry, and G Linden
February 2001, Current microbiology,
Copied contents to your clipboard!