pH-dependent thermostabilization of Escherichia coli ribonuclease HI by histidine to alanine substitutions. 1993

S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
Protein Engineering Research Institute, Osaka, Japan.

Thermal stabilities of mutant ribonuclease HI proteins from Escherichia coli, in which each of five histidine residues was replaced with alanine, were examined at various pHs. Increases in the Tm values were observed at pH 3.0 for four of the mutant proteins, in which each of the four histidine residues exposed to the solvent was mutated, as compared to the Tm of the wild-type protein. The thermostabilization of three of the mutant proteins was dependent on pH, and only observed at low pH. The thermostabilizing effects of the His-->Ala substitutions were cumulative. The temperature of the midpoint of the transition in the thermal unfolding curves, Tm, of the most stable mutant enzyme, in which His 62, His 83, His 124, and His 127 were replaced by Ala, was 5.5 degrees C higher than that of the wild-type enzyme at pH 3.0. The stability of the wild-type protein decreased as the pH was lowered below pH 4, a condition favoring the protonation of carboxyl groups, probably due to unfavorable electrostatic interactions introduced by the increase in positive charges on the protein. Since imidazole groups are positively charged at pH 3.0, it seems likely that thermal stabilization at pH 3.0 by a His-->Ala substitution would be the result of a reduction in such unfavorable electrostatic interactions. These results suggest that amino acid substitutions that cause a decrease in the number of positive charges on the surface of a protein can be used as a general strategy to enhance protein stability at pH values below pH 4.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
November 1992, The Journal of biological chemistry,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
January 1993, The Journal of biological chemistry,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
March 2022, Acta crystallographica. Section D, Structural biology,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
July 1995, FEBS letters,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
October 2000, Biological & pharmaceutical bulletin,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
September 1996, Biochemistry,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
October 1993, The Journal of biological chemistry,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
November 2000, Biochemistry,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
June 1993, Biochemistry,
S Kanaya, and M Oobatake, and H Nakamura, and M Ikehara
January 1993, Protein engineering,
Copied contents to your clipboard!