Structural evolution of bacterial plasmids: role of translocating genetic elements and DNA sequence insertions. 1976

S N Cohen, and D J Kopecko

Recent evidence suggests that plasmids have evolved by site-specific recombinational events involving translocation and insertion of discretely defined DNA segments. The role of translocating genetic elements and repeated DNA sequences in the formation and structural evolution of bacterial plasmids, and in the control of plasmid gene expression, is the subject of this brief review. Insertion sequence (IS) regions are discrete segments of DNA that are known to cause strongly polar mutations in the genes of Escherichia coli and several bacteriophages as a consequence of their insertion into bacterial or phage genomes. Recent investigations have identified three separate kinds of IS segments on plasmids, and have indicated that such regions may have a role in 1) site-specific reversible dissociation of antibiotic resistance plasmids into their component segments, 2) recombination of certain plasmids with the bacterial chromosome, and 3) translocation of segments of plasmid DNA onto other replicons, or onto different sites of the same replicon. In addition, such DNA sequences, which may be repeated on plasmid genomes in either direct or reverse orientation, are involved in the control of plasmid gene expression. Inverted repeats other than the genetically characterized IS segments also appear to be involved in recA-independent, recombination and translocation of plasmid DNA segments. These inverted repeats contain palindromic nucleotide sequences on each strand of DNA and are detectable as hairpin-loop structures by electron microscope heteroduplex analysis. Such palindromes resemble the recognition sites for restriction endonucleases, some of which are encoded by plasmids, suggesting that similar endonucleolytic enzymes may be involved in the translocation of plasmid DNA segments.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological

Related Publications

S N Cohen, and D J Kopecko
January 1983, Progress in nucleic acid research and molecular biology,
S N Cohen, and D J Kopecko
December 2005, Trends in genetics : TIG,
S N Cohen, and D J Kopecko
January 2022, Frontiers in microbiology,
S N Cohen, and D J Kopecko
January 1980, Uspekhi sovremennoi biologii,
S N Cohen, and D J Kopecko
January 1999, Frontiers in bioscience : a journal and virtual library,
S N Cohen, and D J Kopecko
February 1987, Bioorganicheskaia khimiia,
S N Cohen, and D J Kopecko
June 2021, Nature reviews. Microbiology,
S N Cohen, and D J Kopecko
January 1985, Basic life sciences,
Copied contents to your clipboard!