Heparin immobilized chitosan--poly ethylene glycol interpenetrating network: antithrombogenicity. 1995

M S Beena, and T Chandy, and C P Sharma
Biosurface Technology Division, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India.

This work deals with the synthesis and blood compatibility studies of Heparin immobilized chitosan--polyethyleneglycol (Chit-PEG) hydrogels for various biomedical applications. Chit-PEG interpenetrating net work (IPN) had been synthesised by crosslinking different ratios of chitosan with glutaraldehyde using schiffs base reaction mechanism and interpenetrating polyethyleneglycol (PEG) to form hydrogen bonding between the amino hydrogen in chitosan and polyether oxygen. An optimum gel combination was selected from the IPN of Chit-PEG and used for bonding heparin. This modified gel had dramatically improved its blood compatibility. The antithrombotic function of this gel and the release profile of heparin had been investigated using coagulation assays, and spectrophotometric quantitation. Recalcification times of plasma exposed to heparin immobilized Chit-PEG hydrogel were markedly increased as compared to heparin free gels. The anticoagulant function of this gel matrix may be due to partially released heparin and bonded heparin.

UI MeSH Term Description Entries
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D002686 Chitin A linear polysaccharide of beta-1->4 linked units of ACETYLGLUCOSAMINE. It is the second most abundant biopolymer on earth, found especially in INSECTS and FUNGI. When deacetylated it is called CHITOSAN.
D003386 Brachyura An infraorder of chiefly marine, largely carnivorous CRUSTACEA, in the order DECAPODA, including the genera Cancer, Uca, and Callinectes. Blue Crab,Callinectes sapidus,Carcinus maenas,Crab, Blue,Crab, Common Shore,Crab, Green,Crabs, Short-Tailed,Crabs, True,Green Crab,Uca,Common Shore Crab,European Shore Crab,Blue Crabs,Brachyuras,Carcinus maena,Common Shore Crabs,Crab, European Shore,Crab, Short-Tailed,Crab, True,Crabs, Blue,Crabs, Common Shore,Crabs, Green,Crabs, Short Tailed,Green Crabs,Shore Crab, Common,Shore Crab, European,Shore Crabs, Common,Short-Tailed Crab,Short-Tailed Crabs,True Crab,True Crabs,Ucas,maenas, Carcinus
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004339 Drug Compounding The preparation, mixing, and assembly of a drug. (From Remington, The Science and Practice of Pharmacy, 19th ed, p1814). Drug Formulation,Drug Preparation,Drug Microencapsulation,Pharmaceutical Formulation,Compounding, Drug,Formulation, Drug,Formulation, Pharmaceutical,Microencapsulation, Drug,Preparation, Drug
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D005976 Glutaral One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative. Glutaraldehyde,Cidex,Diswart,Gludesin,Glutardialdehyde,Glutarol,Korsolex,Novaruca,Sekumatic,Sonacide,Sporicidin
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

M S Beena, and T Chandy, and C P Sharma
June 2007, Journal of pharmaceutical sciences,
M S Beena, and T Chandy, and C P Sharma
August 2017, Carbohydrate polymers,
M S Beena, and T Chandy, and C P Sharma
April 2019, Journal of pharmaceutical analysis,
M S Beena, and T Chandy, and C P Sharma
December 2010, Tissue engineering. Part C, Methods,
M S Beena, and T Chandy, and C P Sharma
October 2015, Journal of biomedical materials research. Part A,
M S Beena, and T Chandy, and C P Sharma
January 2009, Pharmaceutical research,
M S Beena, and T Chandy, and C P Sharma
December 2004, Journal of biomedical materials research. Part A,
Copied contents to your clipboard!