Cyclic nucleotide dependent relaxation in vascular smooth muscle. 1994

N L McDaniel, and C M Rembold, and R A Murphy
Department of Pediatrics, Internal Medicine (Cardiology), and Physiology, University of Virginia Health Sciences Center, Charlottesville 22908, USA.

Although not without controversy, the mechanisms inducing contraction of vascular smooth muscle are relatively well defined. There is a stimulus-induced increase in myoplasmic [Ca2+] with activation of myosin light chain kinase by the Ca(2+)-calmodulin complex, phosphorylation of the 20-kDa regulatory light chain of myosin, with subsequent cross-bridge cycling and force development. Ca(2+)-dependent phosphorylation of the myosin regulatory light chain appears to be the primary mechanism responsible for regulating stress in vascular smooth muscle. The relationship between myoplasmic [Ca2+] and myosin phosphorylation (i.e., the calcium sensitivity of phosphorylation) is regulated. It is higher with agonist stimulation than in tissues depolarized with high potassium solutions or after skinning procedures. The relationship between myosin phosphorylation and stress appears to be invariant with physiologic stimulation. This suggests that cross-bridge phosphorylation normally determines contraction. The mechanisms of relaxation are less well defined. In the most simple scheme, reduction of myoplasmic [Ca2+] with a fall in myosin light chain kinase activity would suffice to account for dephosphorylation of the regulatory light chain and relaxation. However, other mechanisms have been implicated in cyclic nucleotide dependent relaxation in vascular and other smooth muscle tissues. The current hypotheses of the mechanism of cyclic nucleotide dependent relaxation in vascular smooth muscle are reviewed.

UI MeSH Term Description Entries
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N L McDaniel, and C M Rembold, and R A Murphy
January 2012, Cellular and molecular life sciences : CMLS,
N L McDaniel, and C M Rembold, and R A Murphy
July 1972, European journal of pharmacology,
N L McDaniel, and C M Rembold, and R A Murphy
August 1988, Biochemical Society transactions,
N L McDaniel, and C M Rembold, and R A Murphy
November 1985, The Journal of pharmacology and experimental therapeutics,
N L McDaniel, and C M Rembold, and R A Murphy
January 1996, Annual review of pharmacology and toxicology,
N L McDaniel, and C M Rembold, and R A Murphy
August 1992, The American journal of physiology,
N L McDaniel, and C M Rembold, and R A Murphy
April 2000, Urological research,
N L McDaniel, and C M Rembold, and R A Murphy
March 1995, The American journal of physiology,
N L McDaniel, and C M Rembold, and R A Murphy
October 1982, The Journal of biological chemistry,
Copied contents to your clipboard!