Molecular biology and biochemistry of natriuretic peptide family. 1995

Y Ogawa, and H Itoh, and K Nakao
Department of Medicine, Kyoto University School of Medicine, Japan.

The natriuretic peptide family consists of three endogenous ligands; atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), and is involved in the regulation of cardiovascular homeostasis. Both ANP and BNP act mainly as cardiac hormones and are produced predominantly by the atrium and ventricle, respectively. Expression of the BNP and ANP genes is greatly augmented in patients with congestive heart failure and animal models of ventricular hypertrophy or cardiomyopathy. In the heart, the BNP gene expression is regulated differently from the ANP gene expression both at transcriptional and post-transcriptional levels. Transgenic technology has provided the direct evidence that BNP as well as ANP is involved in the chronic blood pressure control. Contrasting with ANP and BNP, CNP does not act as a cardiac hormone but as a neuropeptide or an endothelium-derived autocrine/paracrine regulator. Endothelial production of CNP is remarkably augmented by various cytokines and growth factors such as transforming growth factor-beta and tumour necrosis factor-alpha, suggesting the pathophysiological significance of CNP in the process of various vascular disorders. Chromosomal mapping of natriuretic peptides has revealed that the CNP gene is localized on mouse chromosome 1, while ANP and BNP are tightly linked on mouse chromosome 4, suggesting that CNP, a local regulator, is functionally and evolutionarily distinct from ANP and BNP, both of which are cardiac hormones. Understanding the molecular biology and biochemistry of the natriuretic peptide family will lead to the better understanding of its physiological and pathophysiological implication, and the clinical application in cardiorenal regulation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

Y Ogawa, and H Itoh, and K Nakao
October 1992, Journal of hypertension,
Y Ogawa, and H Itoh, and K Nakao
September 1992, Journal of hypertension,
Y Ogawa, and H Itoh, and K Nakao
April 1992, Nihon rinsho. Japanese journal of clinical medicine,
Y Ogawa, and H Itoh, and K Nakao
December 1985, The Biochemical journal,
Y Ogawa, and H Itoh, and K Nakao
March 2011, Journal of cardiology,
Y Ogawa, and H Itoh, and K Nakao
August 2001, Canadian journal of physiology and pharmacology,
Y Ogawa, and H Itoh, and K Nakao
November 1968, Nature,
Y Ogawa, and H Itoh, and K Nakao
August 2009, The Biochemical journal,
Y Ogawa, and H Itoh, and K Nakao
February 2006, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!