Mutation of the predicted p34cdc2 phosphorylation sites in NuMA impair the assembly of the mitotic spindle and block mitosis. 1995

D A Compton, and C Luo
Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.

NuMA is a 236 kDa intranuclear protein that is distributed into each daughter cell during mitosis through association with the pericentrosomal region of the mitotic spindle. NuMA's interaction with the microtubules of the mitotic spindle is mediated through its 45 kDa carboxyl-terminal globular tail, and there is indirect evidence suggesting that NuMA's interaction with the mitotic spindle is controlled in a mitosis-specific manner. Consistent with this evidence is the fact that all four of the predicted p34cdc2 consensus phosphorylation sites in the NuMA protein are located in the carboxyl-terminal globular domain, and we demonstrate here that NuMA is phosphorylated in a mitosis-specific fashion in vivo. To test if the predicted p34cdc2 phosphorylation sites are necessary for NuMA's mitosis-specific interaction with the mitotic spindle, we have introduced mutations into the human NuMA cDNA that convert these predicted p34cdc2 phosphorylation sites from threonine or serine residues into alanine residues, and subsequently determined the cell cycle-dependent localization of these altered NuMA proteins following their expression in tissue culture cells. While none of these specific mutations in the NuMA sequence alters the faithful targeting of the protein into the interphase nucleus, mutation of threonine residue 2040 alone or in combination with mutations in other potential p34cdc2 phosphorylation sites abolishes NuMA's ability to associate normally with the microtubules of the mitotic spindle. Instead of binding to the mitotic spindle these mutant forms of NuMA concentrate at the plasma membrane of the mitotic cell. Cells expressing these mutant forms of NuMA have disorganized mitotic spindles, fail to complete cytokinesis normally, and assemble micronuclei in the subsequent interphase. These data suggest that NuMA's interaction with the microtubules of the mitotic spindle is controlled by cell cycle-dependent phosphorylation in addition to differential subcellular compartmentalization, and the characteristics of the dominant negative phenotype induced by these mutant forms of NuMA support a role for NuMA in the organization of the mitotic spindle apparatus.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008941 Spindle Apparatus A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules. Mitotic Apparatus,Mitotic Spindle Apparatus,Spindle Apparatus, Mitotic,Meiotic Spindle,Meiotic Spindle Apparatus,Mitotic Spindle,Apparatus, Meiotic Spindle,Apparatus, Mitotic,Apparatus, Mitotic Spindle,Apparatus, Spindle,Meiotic Spindles,Mitotic Spindles,Spindle Apparatus, Meiotic,Spindle, Meiotic,Spindle, Mitotic,Spindles, Meiotic,Spindles, Mitotic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

D A Compton, and C Luo
November 1995, Journal of cell science,
D A Compton, and C Luo
November 2017, The Journal of cell biology,
D A Compton, and C Luo
June 1997, Journal of cell science,
D A Compton, and C Luo
November 2009, Molecular biology of the cell,
Copied contents to your clipboard!