Relationship between sperm ATP content and motility of carp spermatozoa. 1995

G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
Laboratoire d'Ichtyologie, URM no. 3, Muséum National d'Histoire Naturelle, Paris, France.

Carp spermatozoa are immotile in seminal plasma or in saline solution of high osmolality (> 400 mosmol kg-1). These 'quiescent' spermatozoa initiate a progressive forward motility when transferred in freshwater or in saline solution with low osmolality (< 160 mosmol kg-1). In this study we investigated 'in vitro' the relationship between sperm ATP content (measured by bioluminescence) and sperm motility (analysed by videomicroscopy). Sperm ATP content remained high in the immobilizing medium (200 mM KCl, Tris 30 mM, pH 8.0) where no flagellar movement occurs. Dilution of these spermatozoa in the activating medium (45 mM NaCl, 5 mM KCl, Tris 30 mM, pH 8.0) triggered forward motility which varied with temperature. At 20 degrees C, sperm ATP content decreased rapidly during the progressive forward motility phase from 12 to 4 nmol/10(8) spermatozoa, concomitantly with decreases in velocity (130 to 10 microns s-1) and the beat frequency (50 to 7 Hz). An inhibitor of mitochondrial respiration (KCN 10 mM) produced a drop in sperm ATP content irrespective of the incubation medium (activating or immobilizing). A second phase of sperm motility in the activating medium was induced following a previous transfer of spermatozoa into a medium of high osmolality for a few minutes prior to the second phase. Within 10 minutes, spermatozoa recover 90% of the initial ATP level as well as forward motility. These results suggest that motility of carp spermatozoa depends on sperm ATP synthesized by mitochondrial respiration mainly stored before activation. In low osmolality conditions, the mitochondrial oxidative phosphorylation is unable to compensate for the ATP hydrolysis required to sustain motility.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011190 Potassium Cyanide A highly poisonous compound that is an inhibitor of many metabolic processes, but has been shown to be an especially potent inhibitor of heme enzymes and hemeproteins. It is used in many industrial processes. Potassium Cyanide (K(14)CN),Potassium Cyanide (K(C(15)N)),Cyanide, Potassium
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
April 1979, Theriogenology,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
January 1997, Archives of andrology,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
February 2024, Animal reproduction science,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
January 1985, Acta veterinaria Scandinavica,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
January 1981, Andrologia,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
July 2006, Zhonghua nan ke xue = National journal of andrology,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
January 1991, Acta veterinaria Scandinavica,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
January 1982, Andrologia,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
November 2016, Biology of reproduction,
G Perchec, and C Jeulin, and J Cosson, and F André, and R Billard
April 2016, Journal of proteomics,
Copied contents to your clipboard!