The mushroom-inducing gene Frt1 of Schizophyllum commune encodes a putative nucleotide-binding protein. 1995

J S Horton, and C A Raper
Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405, USA.

Fruiting bodies (mushrooms) can be induced to form in unmated, normally non-fruiting strains of the basidiomycete fungus Schizophyllum commune by the ectopic genomic integration of a cloned gene called Frt1. Thus, the normal requirement of mating for mushroom formation is bypassed. Sequence analysis of genomic and cDNA clones revealed that the Frt1 gene encodes a predicted polypeptide of 192 amino acids, interrupted by three short introns. The FRT1 protein is predicted to be of M(r) 21,625 and does not have significant overall similarity to any known proteins. Analysis of the predicted amino acid sequence revealed the presence of a P-loop motif, a conserved sequence found in nucleotide-binding proteins. A potential site for Mg2+ binding is predicted to reside next to the P-loop at Thr24. The possible functional significance of these and other residues within FRT1 was examined using site-directed mutagenesis, followed by transformation of these mutant alleles of Frt1 back into S. commune. Mutation of the middle glycine of the P-loop completely abolished the fruit-inducing activity of cloned Frt1. Substitution of an alanine residue for Thr24 also resulted in mutant clones with no fruit-inducing activity. The possibility of an interaction between two closely spaced threonine residues within FRT1 was suggested by transformation experiments utilizing mutant Frt1 alleles with specific combinations of mutations at these sites. Taken together, the results of our mutagenesis experiments suggest the possibility that activity of the predicted FRT1 protein could be altered by nucleotide binding and coordination of Mg2+. Northern blot hybridization experiments indicate that Frt1 activity is probably not controlled at the transcriptional level.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J S Horton, and C A Raper
September 2010, Nature biotechnology,
J S Horton, and C A Raper
October 2010, World journal of microbiology & biotechnology,
J S Horton, and C A Raper
December 1999, Evolution; international journal of organic evolution,
J S Horton, and C A Raper
October 1988, Current genetics,
J S Horton, and C A Raper
August 2010, FEMS microbiology letters,
J S Horton, and C A Raper
October 2005, Biochemical and biophysical research communications,
J S Horton, and C A Raper
September 1999, Current genetics,
J S Horton, and C A Raper
February 2021, Journal of food science and technology,
J S Horton, and C A Raper
January 2001, Journal of bioscience and bioengineering,
Copied contents to your clipboard!