(S)oxazepam glucuronidation is inhibited by ketoprofen and other substrates of UGT2B7. 1995

M Patel, and B K Tang, and W Kalow
University of Toronto, Department of Pharmacology, Ontario, Canada.

1,4-Benzodiazepine anxiolytics such as diazepam and halazepam are converted in vivo to oxazepam, an active metabolite with a hydroxyl group at the asymmetric C3 position. D-glucuronic acid couples with the C3 hydroxyl group of oxazepam to form pharmacologically inactive diastereomeric glucuronide conjugates. Conjugation with glucuronic acid is catalysed by the microsomal UDP-glucuronosyltransferase (UGT) enzyme system, which includes an undetermined number of isozymes. Although 1,4-benzodiazepines are ultimately cleared as oxazepam glucuronide, little is known about the particular UGT isozyme(s) responsible for the conjugation at the C3 position of these molecules. Microsomal preparations from three human livers were used to study the glucuronidation of (R,S)oxazepam in vitro. The predominant formation of the S- over the R-glucuronide was reflected by the kinetic parameters: For (S)oxazepam glucuronide, the constants were Km = 0.18 +/- 0.02 mM and Vmax = 202.6 +/- 25.0 nmol min-1 per mg protein; for (R)oxazepam glucuronide, they were Km = 0.22 +/- 0.02 mM, Vmax = 55.4 +/- 9.5 nmol min-1 per mg protein. Inhibition studies suggest that the two diastereomeric glucuronidations are catalysed by different UGT isozymes. That is, there was competitive inhibition of (S)oxazepam glucuronidation by non-steroidal anti-inflammatory drugs (NSAIDs), including ketoprofen while (R)oxazepam glucuronidation was not equally inhibited by these compounds. The order of potency of inhibitors of (S)oxazepam glucuronidation in this study was the same as the rank order of substrates conjugated by UGT2B7; hyodeoxycholic acid, estriol, (S)naproxen, ketoprofen, ibuprofen, fenoprofen, clofibric acid, and morphine (in descending order). The inhibition profile of (S)oxazepam glucuronidation suggests that UGT2B7 is the catalysing enzyme.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007660 Ketoprofen An IBUPROFEN-type anti-inflammatory analgesic and antipyretic. It is used in the treatment of rheumatoid arthritis and osteoarthritis. Benzoylhydratropic Acid,19,583 RP,2-(3-Benzoylphenyl)propionic Acid,Alrheumat,Alrheumum,Orudis,Profenid,RP-19583,RP 19583,RP, 19,583,RP19583
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010076 Oxazepam A benzodiazepine used in the treatment of anxiety, alcohol withdrawal, and insomnia. Adumbran,Serax,Tazepam
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

M Patel, and B K Tang, and W Kalow
June 1976, Biochemical pharmacology,
M Patel, and B K Tang, and W Kalow
December 2004, The Journal of pharmacology and experimental therapeutics,
M Patel, and B K Tang, and W Kalow
December 2006, Drug metabolism and disposition: the biological fate of chemicals,
M Patel, and B K Tang, and W Kalow
July 1999, Pharmaceutical research,
M Patel, and B K Tang, and W Kalow
June 1990, Hepatology (Baltimore, Md.),
M Patel, and B K Tang, and W Kalow
January 1999, Drug metabolism and disposition: the biological fate of chemicals,
M Patel, and B K Tang, and W Kalow
January 1993, Pharmacology & toxicology,
M Patel, and B K Tang, and W Kalow
November 1980, Gastroenterology,
Copied contents to your clipboard!