Estimation of dynamic chemoresponsiveness in wakefulness and non-rapid-eye-movement sleep. 1995

M C Khoo, and F Yang, and J J Shin, and P R Westbrook
Biomedical Engineering Department, University of Southern California, Los Angeles 90089, USA.

We developed a method for quantifying dynamic chemoresponsiveness on the basis of the ventilatory response to pseudorandom binary CO2 stimulation. The dynamic chemoreflex gain (GD) and effective time delay (TDeff) relating breath-to-breath fluctuations in alveolar PCO2 to ventilation were evaluated at frequencies between 0 and 0.05 Hz. Application of the method to simulated "data" showed that estimation errors in GD and TDeff were most likely to be minimized in the range of 0.01-0.03 Hz, corresponding to periodicities of 30-100 s. Estimation of TDeff was generally more susceptible to error than that of GD because of the limited time resolution of the breath-by-breath measurements. In eight awake normal adults, we compared estimates of GD derived from the pseudorandom binary CO2 stimulation test with peripheral and central hypercapnic sensitivities deduced from single-breath and Read rebreathing measurements in the same subject. GD at 0.02 Hz was highly correlated with peripheral hypercapnic sensitivity but poorly correlated with central hypercapnic sensitivity, underscoring the importance of the peripheral chemoreflexes in mediating ventilatory responses to phasic stimuli. Application of the procedure to a different group of 10 healthy volunteers during wakefulness and stage 2 sleep showed decreases in GD in 8 subjects but increases in 2 subjects. However, for the group as a whole, GD and TDeff did not change significantly between wakefulness and sleep. The proposed method may provide information more pertinent to periodic breathing than traditional CO2 response tests do, since the chemoreflex responses to phasic variations in blood gases are likely to be important in determining ventilatory control during sleep.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010313 Partial Pressure The pressure that would be exerted by one component of a mixture of gases if it were present alone in a container. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Partial Pressures,Pressure, Partial,Pressures, Partial
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005260 Female Females

Related Publications

M C Khoo, and F Yang, and J J Shin, and P R Westbrook
April 1996, Brain research,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
June 2005, Current psychiatry reports,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
January 2024, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
November 2021, Molecular brain,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
April 1999, Psychiatry and clinical neurosciences,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
May 2017, Sleep medicine,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
November 2005, Neurologic clinics,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
December 2004, Sleep,
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
April 1967, Science (New York, N.Y.),
M C Khoo, and F Yang, and J J Shin, and P R Westbrook
January 2008, The Journal of international medical research,
Copied contents to your clipboard!