Chimeric muscle and brain glycogen phosphorylases define protein domains governing isozyme-specific responses to allosteric activation. 1995

M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
Department of Biology, York University, North York, Ontario, Canada.

Muscle and brain glycogen phosphorylases differ in their responses to activation by phosphorylation and AMP. The muscle isozyme is potently activated by either phosphorylation or AMP. In contrast, the brain isozyme is poorly activated by phosphorylation and its phosphorylated a form is more sensitive to AMP activation when enzyme activity is measured in substrate concentrations and temperatures encountered in the brain. The nonphosphorylated b form of the brain isozyme also differs from the muscle isozyme b form in its stronger affinity and lack of cooperativity for AMP. To identify the structural determinants involved, six enzyme forms, including four chimeric enzymes containing exchanges in amino acid residues 1-88, 89-499, and 500-842 (C terminus), were constructed from rabbit muscle and human brain phosphorylase cDNAs, expressed in Escherichia coli, and purified. Kinetic analysis of the b forms indicated that the brain isozyme amino acid 1-88 and 89-499 regions each contribute in an additive fashion to the formation of an AMP site with higher intrinsic affinity but weakened cooperativity, while the same regions of the muscle isozyme each contribute to greater allosteric coupling but weaker AMP affinity. Kinetic analysis of the a forms indicated that the amino acid 89-499 region correlated with the reduced response of the brain isozyme to activation by phosphorylation and the resultant increased sensitivity of the a form to activation by saturating levels of AMP. This isozyme-specific response also correlated with the glycogen affinity of the a forms. Enzymes containing the brain isozyme amino acid 89-499 region exhibited markedly reduced glycogen affinities in the absence of AMP compared to enzymes containing the corresponding muscle isozyme region. Additionally, AMP led to greater increases in glycogen affinity of the former set of enzymes. In contrast, phosphate affinities of all a forms were similar in the absence of AMP and increased approximately the same extent in AMP. The potential importance of a number of isozyme-specific substitutions in these sequence regions is discussed.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
July 1993, Biochimica et biophysica acta,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
November 2016, The Journal of biological chemistry,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
January 1967, The Journal of biological chemistry,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
January 2006, Journal of molecular recognition : JMR,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
January 2019, Advances in neurobiology,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
November 2005, Biochemical and biophysical research communications,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
August 1986, Cell,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
September 2020, Medicine and science in sports and exercise,
M M Crerar, and O Karlsson, and R J Fletterick, and P K Hwang
January 1998, Surgery today,
Copied contents to your clipboard!