Pancreatic beta-cell function and islet-cell proliferation: effect of hyperinsulinaemia. 1995

T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
Department of Obstetrics and Gynaecology, University of Groningen, The Netherlands.

Pancreatic beta-cell function was studied in adult female rats, in which endogenous insulin demand was fully met by SC infusion of human insulin (4.8 IU/24 h) for 6 days, resulting in hyperinsulinaemia and severe hypoglycaemia. The amount of pancreatic endocrine tissue declined by 40%, (pro)insulin mRNA, as determined by in situ hybridisation by 95%, and the amount of stored insulin by 90%. Islet-cell proliferation as determined by 24 h of BrdU infusion declined by 60%. Basal glucose levels normalized within 2 days after the insulin treatment was ended, whereas about 1 week was needed to restore the amount of pancreatic insulin, glucose-induced insulin release, and glucose tolerance to normal values. The amount of endocrine tissue recovered within 48 h and mRNA abundance within 96 h after discontinuation of the insulin infusion, whereas at that time islet-cell proliferation still showed a sixfold increase, before returning to control levels after 1 week. These results show that after a period of suppression of beta-cell function, recovery of insulin synthetic capacity does not immediately result in normalization of insulin stores and insulin release. Under these conditions, episodes of hyperglycaemia may occur, which may act as a stimulus for islet-cell proliferation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005260 Female Females
D005951 Glucose Tolerance Test A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg). Intravenous Glucose Tolerance,Intravenous Glucose Tolerance Test,OGTT,Oral Glucose Tolerance,Oral Glucose Tolerance Test,Glucose Tolerance Tests,Glucose Tolerance, Oral
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide

Related Publications

T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
January 1984, Problemy endokrinologii,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
November 2016, Diabetologia,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
October 1972, Proceedings of the Royal Society of Medicine,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
June 2008, FEBS letters,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
January 2023, Zhonghua nei ke za zhi,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
January 2011, PloS one,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
January 1987, Acta diabetologica latina,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
August 2023, bioRxiv : the preprint server for biology,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
December 1978, Antibiotiki,
T R Koiter, and S Wijkstra, and C J van Der Schaaf-Verdonk, and H Moes, and G A Schuiling
August 2001, Diabetologia,
Copied contents to your clipboard!