Effects of carotid body sympathetic denervation on ventilatory acclimatization to hypoxia in the goat. 1995

M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
Department of Comparative Biosciences, School of Veterinary Medicine, Madison, WI 53706, USA.

Our objective was to test the hypothesis that diminishing sympathetic input to the carotid body (CB) during prolonged exposure to hypoxia results in increased CB afferent activity and increased ventilatory drive. Six awake goats were studied prior to and following sectioning of the efferent sympathetic input to the CB from the superior cervical ganglion. Ventilatory responses to acute and prolonged isocapnic hypoxia (PaO2 40 Torr) and drugs (norepinephrine and dopamine, 0.5, 1.0 and 5.0 micrograms.kg-1 min-1) were collected prior to the denervation. One week and 3-4 weeks following the sympathetic denervation, the animals were restudied following the above protocol. Ventilation was significantly lower following sympathetic denervation in normoxia and during the hypoxic exposure. However, the response to acute hypoxia and the time-course of ventilatory acclimatization to hypoxia was not altered by sympathetic denervation. All doses of norepinephrine and dopamine significantly inhibited VE in a dose-dependent manner. Sympathetic denervation did not significantly alter the response to the drug infusions. The sympathetic innervation to the CB does not appear to play a role in either the acute or prolonged ventilatory responses to hypoxia in the awake goat, but may affect overall ventilation.

UI MeSH Term Description Entries
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D006041 Goats Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP. Capra,Capras,Goat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D012966 Sodium Cyanide A highly poisonous compound that is an inhibitor of many metabolic processes and is used as a test reagent for the function of chemoreceptors. It is also used in many industrial processes. Cyanogran,Cyanide, Sodium

Related Publications

M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
January 1996, Advances in experimental medicine and biology,
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
January 1997, Journal of applied physiology (Bethesda, Md. : 1985),
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
June 1970, Journal of applied physiology,
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
April 1985, Respiration physiology,
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
July 2000, Respiration physiology,
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
March 1986, Journal of applied physiology (Bethesda, Md. : 1985),
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
October 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
July 1986, Respiration physiology,
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
October 1990, Journal of applied physiology (Bethesda, Md. : 1985),
M L Ryan, and M S Hedrick, and J Pizarro, and G E Bisgard
December 1987, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!