The baculovirus GP64 envelope fusion protein: synthesis, oligomerization, and processing. 1995

A G Oomens, and S A Monsma, and G W Blissard
Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853-1801, USA.

The baculovirus GP64 envelope fusion protein (GP64 EFP) is a class I integral membrane protein that enters the secretory pathway and is oligomerized and extensively processed during transport to the plasma membrane. The kinetics of GP64 EFP biosynthesis, oligomerization, and processing in Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV)-infected Lymantria dispar cells were examined by pulse label, pulse-chase, and immunoprecipitation experiments. Relative rates of GP64 EFP synthesis in OpMNPV-infected L. dispar cells were examined at various times throughout the infection cycle. Using pulse labeling and immunoprecipitation, GP64 EFP synthesis was detected within 2 hr p.i., and the maximal rate of synthesis was observed in the period of 24-26 hr p.i., a time coincident with the onset of high level production of budded virus in OpMNPV-infected L. dispar cells. To determine the oligomeric structure of GP64 EFP, a soluble form of OpMNPV GP64 EFP was produced and examined by a combination of gel filtration chromatography, nonreducing SDS-PAGE, and mass spectrometry. Oligomeric GP64 EFP was identified as a trimeric molecule, that migrates as two discrete bands on nonreducing SDS-PAGE. Pulse-chase studies, performed at both early (12 hr p.i.) and late (36 hr p.i.) stages of the infection cycle, showed that GP64 EFP oligomerization is complete within 15 min after synthesis. Efficiency of oligomerization however was relatively low, with less than 33% of the synthesized GP64 EFP converted to trimers. The majority of monomeric GP64 EFP remaining in the cell appeared to be degraded within 30 to 45 min after synthesis. Analysis of the kinetics of carbohydrate processing at early (12 hr p.i.) and late (36 hr p.i.) times postinfection showed that for both early and late phases of infection, carbohydrate was rapidly added, and processing began between 10 and 20 min after GP64 EFP synthesis. Although carbohydrate processing was completed within approximately 90 min after synthesis during the early phase, the same process required approximately 150 min during the late phase. Thus, carbohydrate processing appeared to become less efficient as infection progressed. These studies thus show that GP64 EFP undergoes a rapid but inefficient oligomerization step that results in a homotrimeric structure for GP64 EFP. While carbohydrate addition is rapid, carbohydrate processing requires prolonged periods of time (with half-times of 45 to 75 min) and appears to become less efficient during the late phase of the infection.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007915 Lepidoptera A large order of insects comprising the butterflies and moths.
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014760 Viral Fusion Proteins Proteins, usually glycoproteins, found in the viral envelopes of a variety of viruses. They promote cell membrane fusion and thereby may function in the uptake of the virus by cells. Fusion Proteins, Viral,Viral Fusion Glycoproteins,F Protein (Sendai Virus),F Protein Measles Virus,F Protein Newcastle Disease Virus,F Protein SV,F-Glycoprotein SV,F1 Polypeptide (Paramyxovirus),Fusion Glycoprotein, Viral,Fusion VP1 Protein,Glycoprotein, Viral Fusion,Measles Fusion Protein,Mumps Virus Fusion Protein,Paramyxovirus Fusion Protein,Sendai Virus Fusion Protein,Viral Fusion-GP,Virus Fusion Proteins,Fusion Glycoproteins, Viral,Fusion Protein, Measles,Fusion Protein, Paramyxovirus,Fusion Proteins, Virus,Fusion-GP, Viral,Glycoproteins, Viral Fusion,Proteins, Virus Fusion,VP1 Protein, Fusion,Viral Fusion GP,Viral Fusion Glycoprotein

Related Publications

A G Oomens, and S A Monsma, and G W Blissard
May 1997, Virology,
A G Oomens, and S A Monsma, and G W Blissard
October 2016, Biotechnology letters,
A G Oomens, and S A Monsma, and G W Blissard
November 1992, Journal of virology,
A G Oomens, and S A Monsma, and G W Blissard
January 2003, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
A G Oomens, and S A Monsma, and G W Blissard
March 2002, Protein expression and purification,
A G Oomens, and S A Monsma, and G W Blissard
December 2007, The Journal of general virology,
A G Oomens, and S A Monsma, and G W Blissard
December 1999, Molecular biology of the cell,
A G Oomens, and S A Monsma, and G W Blissard
February 2016, Journal of virology,
Copied contents to your clipboard!