A direct interaction between G-protein beta gamma subunits and the Raf-1 protein kinase. 1995

K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
Parke-Davis Pharmaceutical Research Division, Department of Signal Transduction, Ann Arbor, Michigan 48106, USA.

Raf-1 is a serine/threonine protein kinase positioned downstream of Ras in the mitogen-activated protein kinase cascade. Using a yeast two-hybrid strategy to identify other proteins that interact with and potentially regulate Raf-1, we isolated a clone encoding the carboxyl-terminal half of the G beta 2 subunit of heterotrimeric G-proteins. In vitro, purified G beta gamma subunits specifically bound to a GST fusion protein encoding amino acids 1-330 of Raf-1 (Raf/330). Binding assays with truncation mutants of GST-Raf indicate that the region located between amino acids 136 and 239 is a primary determinant for interaction with G beta gamma. In competition experiments, the carboxyl terminus of beta-adrenergic receptor kinase (beta ARK) blocked the binding of G beta gamma to Raf/330; however, the Raf-1-binding proteins, Ras and 14-3-3, had no effect. Scatchard analysis of in vitro binding between Raf/330 and G beta gamma revealed an affinity of interaction (Kd = 163 +/- 36 nM), similar to that seen between G beta gamma and beta ARK (Kd = 87 +/- 24 nM). The formation of native heterotrimeric G alpha beta gamma complexes, as measured by pertussis toxin ADP-ribosylation of G alpha, could be disrupted by increasing amounts of Raf/330, with an EC50 of approximately 200 nM, in close agreement with the estimated binding affinity. In vivo complexes of Raf-1 and G beta gamma were isolated from human embryonic kidney 293-T cells transfected with epitope-tagged G beta 2. The identification and characterization of this novel interaction raises several possibilities for signaling cross-talk between growth factor receptors and those receptors coupled to heterotrimeric G-proteins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D051552 beta-Adrenergic Receptor Kinases G-protein-coupled receptor kinases that mediate agonist-dependent PHOSPHORYLATION and desensitization of BETA-ADRENERGIC RECEPTORS. beta-Adrenergic Receptor Kinase,beta-AR Kinase,Receptor Kinase, beta-Adrenergic,Receptor Kinases, beta-Adrenergic,beta AR Kinase,beta Adrenergic Receptor Kinase,beta Adrenergic Receptor Kinases

Related Publications

K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
January 1997, Annual review of pharmacology and toxicology,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
April 2003, Science in China. Series C, Life sciences,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
April 2001, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
April 1993, The Journal of biological chemistry,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
March 1999, The Journal of biological chemistry,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
August 2005, Biochemistry,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
October 1996, The Biochemical journal,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
July 1995, FEBS letters,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
July 1995, The Journal of biological chemistry,
K M Pumiglia, and H LeVine, and T Haske, and T Habib, and R Jove, and S J Decker
March 1992, Biochemistry,
Copied contents to your clipboard!