Genomic actions of 1,25-dihydroxyvitamin D3. 1995

G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
Department of Biochemistry, University of Arizona College of Medicine, Tucson 85724, USA.

Recent studies have identified a heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) as the active complex for mediating positive transcriptional effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active hormonal form of vitamin D. The VDR-RXR heterodimer has been shown to bind to direct repeat vitamin D-responsive elements (VDREs) upstream of positively controlled genes in the target tissues for vitamin D, including bone (osteocalcin, osteopontin, and beta 3 integrin), kidney (24-hydroxylase) and intestine (calbindin). Residues that participate in heterodimer formation have been identified in the C-terminal hormone-binding domain by analysis of VDR mutants. The role of the 1,25(OH)2D3 ligand in transcriptional activation by the VDR-RXR heterodimer is not entirely clear, but studies of two natural VDR mutants suggest that the binding of both hormone and RXR are required to induce a receptor conformation that is competent to activate transcription. A final level of complexity is added by recent observations that VDR is modified by phosphorylation. Thus, the VDR-mediated action of 1,25(OH)2D3 is now known to involve multiple factors that may provide a conceptual basis for future understanding of the tissue-specific genomic effects of 1,25(OH)2D3.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014801 Vitamin A Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of CAROTENOIDS found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products. Retinol,11-cis-Retinol,3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-E)-Isomer,All-Trans-Retinol,Aquasol A,Vitamin A1,All Trans Retinol
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D047488 Retinoid X Receptors A subtype of RETINOIC ACID RECEPTORS that are specific for 9-cis-retinoic acid which function as nuclear TRANSCRIPTION FACTORS that regulate multiple signaling pathways. Retinoid X Receptor,9-cis-Retinoic Acid Receptor,RXR Protein,Receptor, Retinoid X,XR78E-F protein,Protein, RXR,Receptor, 9-cis-Retinoic Acid,Receptors, Retinoid X,XR78E F protein,protein, XR78E-F
D018167 Receptors, Calcitriol Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors. Calcitriol Receptors,Cholecalciferol Receptors,Receptors, Vitamin D,Vitamin D 3 Receptors,Vitamin D Receptors,1,25-Dihydroxycholecalciferol Receptor,1,25-Dihydroxycholecalciferol Receptors,1,25-Dihydroxyvitamin D 3 Receptor,1,25-Dihydroxyvitamin D3 Receptor,1,25-Dihydroxyvitamin D3 Receptors,Calcitriol Receptor,Receptors, 1,25-Dihydroxyvitamin D 3,Receptors, Cholecalciferol,Receptors, Vitamin D 3,Receptors, Vitamin D3,Vitamin D 3 Receptor,Vitamin D Receptor,Vitamin D3 Receptor,Vitamin D3 Receptors,1,25 Dihydroxycholecalciferol Receptor,1,25 Dihydroxycholecalciferol Receptors,1,25 Dihydroxyvitamin D 3 Receptor,1,25 Dihydroxyvitamin D3 Receptor,1,25 Dihydroxyvitamin D3 Receptors,D Receptor, Vitamin,D Receptors, Vitamin,D3 Receptor, 1,25-Dihydroxyvitamin,D3 Receptor, Vitamin,D3 Receptors, 1,25-Dihydroxyvitamin,D3 Receptors, Vitamin,Receptor, 1,25-Dihydroxycholecalciferol,Receptor, 1,25-Dihydroxyvitamin D3,Receptor, Calcitriol,Receptor, Vitamin D,Receptor, Vitamin D3,Receptors, 1,25-Dihydroxycholecalciferol,Receptors, 1,25-Dihydroxyvitamin D3

Related Publications

G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
June 1995, The Journal of steroid biochemistry and molecular biology,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
June 1996, The Biochemical journal,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
August 1994, Biochemical and biophysical research communications,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
August 1995, Bone,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
September 1991, American journal of kidney diseases : the official journal of the National Kidney Foundation,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
October 1991, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
June 1995, The Journal of nutrition,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
May 1991, Biochemical and biophysical research communications,
G K Whitfield, and J C Hsieh, and P W Jurutka, and S H Selznick, and C A Haussler, and P N MacDonald, and M R Haussler
March 1974, Science (New York, N.Y.),
Copied contents to your clipboard!