Specific c-myc and max regulation in epithelial cells. 1995

C Martel, and D Lallemand, and C Crémisi
Unité de Technologie Cellulaire, Institut Pasteur, Paris, France.

We have investigated c-myc, max and c-fos mRNA and protein expression in proliferating, quiescent and stimulated immortalized, SV40 T antigen (LT) transformed and tumor-derived epithelial cells as well in human primary keratinocytes and have compared them to their expression in fibroblasts. In proliferating immortalized and tumor-derived epithelial cells, the levels of c-myc, max and c-fos expression were comparable and much higher than in transformed fibroblasts. c-myc and c-fos mRNA and protein levels remained high even during quiescence, when cells stopped dividing. In contrast, whereas max mRNA was constitutively expressed, max protein levels decreased in both fibroblasts and epithelial cells at high cell density. Changing the medium to serum-free medium of confluent epithelial cells induced a complete proliferative response which started with a transient increase in c-fos and c-myc mRNA, followed by the expression of max. Addition of serum to the medium did not induce additional effects. In fibroblasts, similar treatment induced the arrest of c-myc expression and growth, but max expression was also induced in these cells by serum. Our results therefore show that max expression is growth regulated in both immortalized and transformed epithelial as well as fibroblast cells. In contrast, in epithelial cells, c-myc displayed two contrasting behaviors.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D016259 Genes, myc Family of retrovirus-associated DNA sequences (myc) originally isolated from an avian myelocytomatosis virus. The proto-oncogene myc (c-myc) codes for a nuclear protein which is involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Truncation of the first exon, which appears to regulate c-myc expression, is crucial for tumorigenicity. The human c-myc gene is located at 8q24 on the long arm of chromosome 8. L-myc Genes,N-myc Genes,c-myc Genes,myc Genes,v-myc Genes,L-myc Proto-Oncogenes,N-myc Proto-Oncogenes,c-myc Proto-Oncogenes,myc Oncogene,v-myc Oncogenes,Gene, L-myc,Gene, N-myc,Gene, c-myc,Gene, myc,Gene, v-myc,Genes, L-myc,Genes, N-myc,Genes, c-myc,Genes, v-myc,L myc Genes,L myc Proto Oncogenes,L-myc Gene,L-myc Proto-Oncogene,N myc Genes,N myc Proto Oncogenes,N-myc Gene,N-myc Proto-Oncogene,Oncogene, myc,Oncogene, v-myc,Oncogenes, myc,Oncogenes, v-myc,Proto-Oncogene, L-myc,Proto-Oncogene, N-myc,Proto-Oncogene, c-myc,Proto-Oncogenes, L-myc,Proto-Oncogenes, N-myc,Proto-Oncogenes, c-myc,c myc Genes,c myc Proto Oncogenes,c-myc Gene,c-myc Proto-Oncogene,myc Gene,myc Oncogenes,v myc Genes,v myc Oncogenes,v-myc Gene,v-myc Oncogene

Related Publications

C Martel, and D Lallemand, and C Crémisi
December 1999, Zhonghua yi xue za zhi,
C Martel, and D Lallemand, and C Crémisi
January 2006, American journal of physiology. Gastrointestinal and liver physiology,
C Martel, and D Lallemand, and C Crémisi
August 1994, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
C Martel, and D Lallemand, and C Crémisi
November 2011, The international journal of biochemistry & cell biology,
C Martel, and D Lallemand, and C Crémisi
January 2011, Current topics in microbiology and immunology,
C Martel, and D Lallemand, and C Crémisi
January 1994, Cellular & molecular biology research,
C Martel, and D Lallemand, and C Crémisi
September 1992, Oncogene,
C Martel, and D Lallemand, and C Crémisi
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!