A method for the deletion of restriction sites in bacterial plasmid deoxyribonucleic acid. 1976

C Covey, and D Richardson, and J Carbon

A general method has been developed for the deletion of restriction endonuclease sites in bacterial plasmid DNA. The procedure involves partial digestion of the covalently closed circular plasmid DNA with an appropriate restriction endonuclease under conditions which allow accumulation of unit-length linear DNA molecules, a controlled digestion of the exposed 5' ends with the lambda 5'-exonuclease, and in vivo recircularization of the resulting linear DNA in a bacterial host cell. The method has been used for the deletion of one of the two EcoRI sites in the plasmid pML2 (colE1-Km). Two of the resulting plasmids, pCR1 and pCR11, have a single EcoRI cleavage site, but retain genetic determinants specifying resistance to colicin E1 and kanamycin, and thus may be useful as vectors for the cloning and amplification of DNA in bacteria.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004267 DNA Viruses Viruses whose nucleic acid is DNA. DNA Virus,Virus, DNA,Viruses, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005111 Extrachromosomal Inheritance Vertical transmission of hereditary characters by DNA from cytoplasmic organelles such as MITOCHONDRIA; CHLOROPLASTS; and PLASTIDS, or from PLASMIDS or viral episomal DNA. Cytoplasmic Inheritance,Extranuclear Inheritance,Inheritance, Cytoplasmic,Inheritance, Extrachromosomal,Inheritance, Extranuclear

Related Publications

C Covey, and D Richardson, and J Carbon
November 1973, Journal of bacteriology,
C Covey, and D Richardson, and J Carbon
June 1979, The Journal of applied bacteriology,
C Covey, and D Richardson, and J Carbon
December 1989, Nucleic acids research,
C Covey, and D Richardson, and J Carbon
January 2002, Journal of virological methods,
C Covey, and D Richardson, and J Carbon
May 1980, Applied and environmental microbiology,
C Covey, and D Richardson, and J Carbon
September 1976, Journal of bacteriology,
C Covey, and D Richardson, and J Carbon
November 1990, Journal of forensic sciences,
C Covey, and D Richardson, and J Carbon
October 1976, Journal of bacteriology,
C Covey, and D Richardson, and J Carbon
October 1970, Journal of bacteriology,
C Covey, and D Richardson, and J Carbon
January 1977, Journal of bacteriology,
Copied contents to your clipboard!