Developmental regulation and tissue-specific differences of heat shock gene expression in transgenic tobacco and Arabidopsis plants. 1995

R Prändl, and E Kloske, and F Schöffl
Universität Tübingen, Biologisches Institut, Germany.

The heat shock (hs) response during plant growth and development was analyzed in tobacco and Arabidopsis using chimaeric beta-glucuronidase reporter genes (hs-Gus) driven by a soybean hs promoter. Fluorimetric measurements and histochemical staining revealed high Gus activities in leaves, roots, and flowers exclusively after heat stress. The highest levels of heat-inducible expression were found in the vascular tissues. Without heat stress, a developmental induction of hs-Gus was indicated by the accumulation of high levels of Gus in transgenic tobacco seeds. There was no developmental induction of hs-Gus in Arabidopsis seeds. In situ hybridization to the RNA of the small heat shock protein gene Athsp17.6 in tissue sections revealed an expression in heat-shocked leaves but no expression in control leaves of Arabidopsis. However, a high level of constitutive expression of hs genes was detected in meristematic and provascular tissues of the Arabidopsis embryo. The developmental and tissue-specific regulation of the hs response is discussed.

UI MeSH Term Description Entries
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D013025 Glycine max An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS. Soy Beans,Soybeans,Bean, Soy,Beans, Soy,Soy Bean,Soybean
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations

Related Publications

R Prändl, and E Kloske, and F Schöffl
October 1997, The Plant journal : for cell and molecular biology,
R Prändl, and E Kloske, and F Schöffl
November 1988, Plant physiology,
R Prändl, and E Kloske, and F Schöffl
October 1990, Plant molecular biology,
R Prändl, and E Kloske, and F Schöffl
November 1990, Endocrinology,
R Prändl, and E Kloske, and F Schöffl
January 1987, Developmental genetics,
R Prändl, and E Kloske, and F Schöffl
December 1996, Plant cell reports,
R Prändl, and E Kloske, and F Schöffl
August 1988, Nucleic acids research,
Copied contents to your clipboard!