Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. 1995

G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
Department of Medicine, King's College School of Medicine and Dentistry, London, UK.

BACKGROUND Vascular endothelial growth factor (VEGF) is a hypoxia-inducible direct angiogenic factor. Upregulation of VEGF is thought to mediate many of the angiogenic effects of growth factors that are not direct endothelial cell mitogens. Like VEGF, basic fibroblast growth factor (bFGF) is considered to induce angiogenesis by a direct effect on endothelial cells. This study investigated the possibility that bFGF may also act indirectly by regulating VEGF expression in vascular smooth muscle cells (VSMCs). RESULTS Incubation of confluent and quiescent cultures of rabbit VSMCs with bFGF caused a time- and concentration-dependent increase in steady-state levels of VEGF mRNA, as analyzed by Northern blot hybridization. Exposure of VSMCs to a threshold hypoxic stimulus (2.5% O2) caused a modest increase in VEGF mRNA levels. However, the combination of 2.5% O2 with bFGF had a marked synergistic effect. This effect was specific for VEGF as hypoxia did not enhance bFGF-induced expression of the proto-oncogene c-myc. Synergistic upregulation of VEGF mRNA expression also was observed between hypoxia and TGF-beta 1. CONCLUSIONS These results suggest that bFGF may promote angiogenesis both by a direct effect on endothelial cells and also indirectly by the upregulation of VEGF in VSMCs. The synergy demonstrated between hypoxia and either bFGF or TGF-beta 1 suggests that multiple diverse stimuli may interact via the upregulation of VEGF expression in VSMCs to amplify the angiogenic response.

UI MeSH Term Description Entries
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
April 1988, European journal of cell biology,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
July 2004, Basic research in cardiology,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
May 2010, BMC cell biology,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
October 1998, Circulation research,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
May 2000, Atherosclerosis,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
January 2001, In vitro cellular & developmental biology. Animal,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
August 2007, Arteriosclerosis, thrombosis, and vascular biology,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
September 2001, Journal of cellular physiology,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
April 1997, Journal of molecular and cellular cardiology,
G T Stavri, and I C Zachary, and P A Baskerville, and J F Martin, and J D Erusalimsky
May 1996, The Journal of biological chemistry,
Copied contents to your clipboard!