Regrowth of optic fibers and behavioral recovery after optic chiasm transection. 1995

R F Waldeck, and E R Gruberg
Biology Department, Temple University, Philadelphia, Pennsylvania 19122, USA.

We studied the effect of optic chiasm midline transection on visually guided behavior and retinotectal fiber regrowth in frogs. After complete transection, frogs do not respond to visually presented prey and looming stimuli. Beginning about 2 months later there is recovery of visual function. However, unlike recovery after optic nerve transection, animals respond as if the stimulus were not at its actual position, but at the symmetric position in the contralateral field. For instance, if a prey stimulus is located 5 cm away from the recovered frog at an eccentricity of 40 degrees to the left of the midline, the animal will respond as if the stimulus were 5 cm away at 40 degrees right. Further, these animals typically respond to looming stimuli not by jumping away from the stimulus, but by either colliding with the stimulus or jumping toward the side from which the stimulus approaches. These behaviors persist throughout the testing period, up to 17.5 months postlesion. Electrophysiological recordings reveal that visual activity in the optic tectum is retinotopically organized but driven primarily by stimuli to the ipsilateral eye. HRP histochemistry reveals that some regenerated retinal fibers are found to cross at the midline of the chiasm. Thus, the midline is not impenetrable to crossing retinal fibers. Frogs with cut of 3/4 of the chiasm respond normally to prey stimuli initially but later respond as if the stimuli are at mirror image locations. In these animals most retinotectal fibers project to the ipsilateral tectum despite the presence of intact contralaterally projecting retinotectal fibers during the recovery period.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R F Waldeck, and E R Gruberg
January 1989, Anatomischer Anzeiger,
R F Waldeck, and E R Gruberg
February 1998, Australasian radiology,
R F Waldeck, and E R Gruberg
May 1997, Australasian radiology,
R F Waldeck, and E R Gruberg
June 1984, Brain research,
R F Waldeck, and E R Gruberg
January 1993, Perspectives on developmental neurobiology,
R F Waldeck, and E R Gruberg
October 1969, American journal of ophthalmology,
R F Waldeck, and E R Gruberg
August 1983, Neuroscience letters,
R F Waldeck, and E R Gruberg
January 1997, Peptides,
R F Waldeck, and E R Gruberg
May 1991, Behavioural brain research,
Copied contents to your clipboard!