Quantitative differences in androgen and glucocorticoid receptor DNA binding properties contribute to receptor-selective transcriptional regulation. 1995

S E Rundlett, and R L Miesfeld
Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.

Androgen receptor (AR) and glucocorticoid receptor (GR) belong to the same subfamily of steroid/nuclear receptors and have been shown to bind qualitatively to the same hormone response element (HRE) DNA sequences. Despite this similarity in target gene recognition, AR and GR have differential affects on the transcriptional regulation of genes containing both simple and complex HRE control regions. Using HREs from the mouse mammary tumor virus (MMTV), tyrosine aminotransferase (TAT), prostatein (C3) or sex-limited protein (SLP) genes, linked to the thymidine kinase promoter, we found receptor-selective differences in the ability of rat AR and rat GR to induce transcription of these various reporter genes. Since AR and GR have a 20% amino acid sequence difference in their DNA binding domains (DBDs), which could result in altered DNA binding affinities, we measured the ability of purified AR and GR DBDs to bind selectively and with high affinity to these HRE sequences in vitro. Gel shift mobility assays showed that the GR DBD had a higher affinity for a consensus HRE than did the AR DBD, and quantitative DNase I footprinting revealed that AR and GR DBDs bound to the MMTV, TAT, C3 and SLP HREs with different affinities. It was found that AR had a dissociation constant (Kd) that was 2-3 times higher than GR on the TAT, C3 and SLP HREs and that the Kd of AR for the C3 and SLP HREs differed by an order of magnitude (43 nM and 460 nM, respectively). Taken together, these data suggest that amino acid differences in the AR and GR DBDs contribute to altered receptor-DNA interactions, however it is likely that non-receptor factors are involved in further modulating receptor-selective DNA binding and transactivation functions.

UI MeSH Term Description Entries
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

S E Rundlett, and R L Miesfeld
August 1998, Biochemical Society transactions,
S E Rundlett, and R L Miesfeld
December 2006, Biochemical Society transactions,
S E Rundlett, and R L Miesfeld
April 1995, Journal of immunology (Baltimore, Md. : 1950),
S E Rundlett, and R L Miesfeld
December 1995, Molecular and cellular endocrinology,
S E Rundlett, and R L Miesfeld
August 1993, The Journal of biological chemistry,
S E Rundlett, and R L Miesfeld
January 2000, Transplant international : official journal of the European Society for Organ Transplantation,
Copied contents to your clipboard!