Region-specific cosmids and STRPs identified by chromosome microdissection and FISH. 1995

W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
Department of Pediatrics, University of Michigan, Ann Arbor 48109, USA.

A strategy for identifying short tandem repeat (STR)-containing cosmid clones from a specific chromosomal region is described. The approach is based on the use of uncloned, PCR-amplified DNA derived from chromosome microdissection and pooled groups of STR sequences as hybridization probes to screen a cosmid library. Cosmid clones that display a positive signal common to both hybridizations are then characterized for repeat length polymorphisms. This method has been applied to chromosome bands 17q12-q21, a region that includes a gene (BRCA1) involved in early onset familial breast and ovarian cancer. Of 1536 chromosome 17-specific cosmid clones tested, 38 were identified by the dual screening procedure. Fluorescence in situ hybridization revealed that 19 cosmids originated from the microdissected target region. Thirteen of the 19 cosmids were mapped between markers flanking the BRCA1 region and selected for further characterization. Tetranucleotide repeats were identified in 10 of these 13 cosmids. Primers designed for each marker were tested on a panel of 80 CEPH parents for allele sizes, frequencies, and observed heterozygosities. From these studies six polymorphic and one nonpolymorphic STRs were identified. A similar approach should be applicable for screening whole genomic or chromosome-specific cosmid libraries in efforts to isolate new polymorphic markers from any chromosomal region of interest.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002886 Chromosomes, Human, Pair 17 A specific pair of GROUP E CHROMOSOMES of the human chromosome classification. Chromosome 17
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
March 1992, Nucleic acids research,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
August 1993, Genomics,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
March 1995, American journal of medical genetics,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
January 1997, Cancer genetics and cytogenetics,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
January 1997, Cytogenetics and cell genetics,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
April 1992, Nature genetics,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
January 2001, Methods in molecular medicine,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
October 1994, International journal of oncology,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
January 2006, European journal of medical genetics,
W L Flejter, and P Bennett-Baker, and C L Barcroft, and S Kiousis, and J S Chamberlain
January 1999, Animal biotechnology,
Copied contents to your clipboard!