DNA damage induced by tumour necrosis factor-alpha in L929 cells is mediated by mitochondrial oxygen radical formation. 1995

Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan.

Treatment of L929 cells with tumour necrosis factor-alpha (TNF-alpha) plus actinomycin D induced DNA damage (indicated by the appearance of a sub-G1 peak due to extracellular leakage of low molecular weight DNA following DNA fragmentation) before significant cell lysis occurred. The DNA damage occurred in parallel with a decrease of the intracellular total glutathione content and an increase of intracellular reactive oxygen intermediates (ROI), as indicated by increased dihydrorhodamine 123 oxidation. Because the inhibition of mitochondrial respiration suppressed the increase of dihydrorhodamine 123 oxidation and DNA damage as well as the decrease in the total glutathione content, it was suggested that increased mitochondrial formation of ROI was responsible for DNA damage after TNF treatment. Deferoxamine (a ferric iron chelator) and dithiothreitol (a sulfhydryl reagent) both prevented DNA damage and cell killing, indicate that hydroxyl radicals generated from O2- and H2O2 produced by the mitochondria in a process catalysed by iron contributed to DNA damage and that this pathway may be involved in TNF-alpha-induced cytotoxicity. An inhibitor of poly(ADP)-ribose polymerase (3-aminobenzamide), worsened DNA damage, but was protective against cell lysis, suggesting that DNA repair subsequent to injury was more important than DNA damage per se in development of TNF-alpha cytotoxicity.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine

Related Publications

Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
March 2003, The Biochemical journal,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
March 1995, The Journal of pharmacy and pharmacology,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
January 1987, Nature,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
June 2000, Life sciences,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
November 1997, Cytokine,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
January 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
August 2014, FEBS letters,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
January 1993, The Biochemical journal,
Y Shoji, and Y Uedono, and H Ishikura, and N Takeyama, and T Tanaka
September 2007, Free radical research,
Copied contents to your clipboard!