A canine model of acute hindbrain ischemia and reperfusion. 1995

J Guo, and J J Liao, and J K Preston, and H H Batjer
Department of Neurological Surgery, University of Texas Southwestern Medical Center at Dallas, USA.

Animal models of brain stem ischemia are needed for pathophysiological study and evaluation of treatment; few such models are available currently. A new canine model of hindbrain ischemia and reperfusion is introduced in this article. Through an anterior cervical approach, the basilar artery was surgically exposed in 18 dogs. The posterior communicating and superior cerebellar arteries were embolized with cyanoacrylate glue to isolate the posterior circulation from the anterior circulation. Reversible hindbrain ischemia was induced in 14 dogs by the temporary clipping of the vertebral and ventral spinal arteries for various periods (10-30 min), then the clips were removed and reperfusion was achieved for 5 hours. In all 14 dogs, the hindbrain ischemia was confirmed by the decreased perfusion pressure in the basilar artery (< 10 mm Hg), the diminished regional cerebral blood flow as measured with a laser Doppler flowmeter at the medulla oblongata (< 10 ml/100 g/min), the flattened brain stem auditory evoked potentials, and the increased leakage of Evans blue dye from tissue. These parameters did not change in the four control dogs. The changes in brain stem auditory evoked potentials were closely related to the length of ischemic interval; after 10 minutes of ischemia, reperfusion fully reversed the changes in brain stem auditory evoked potentials, but 20-minute and 30-minute ischemic intervals partially or totally depleted the brain stem auditory evoked potentials. Delayed postischemic hypoperfusion occurred in all five dogs that underwent the 30-minute ischemic interval. The early physiological changes in this model allowed us to estimate the severity of brain stem ischemia and the resulting damage.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005070 Evans Blue An azo dye used in blood volume and cardiac output measurement by the dye dilution method. It is very soluble, strongly bound to plasma albumin, and disappears very slowly. Azovan Blue,C.I. 23860,C.I. Direct Blue 53,Evan's Blue,Blue, Azovan,Blue, Evan's,Blue, Evans,Evan Blue
D005260 Female Females
D005740 Gases The vapor state of matter; nonelastic fluids in which the molecules are in free movement and their mean positions far apart. Gases tend to expand indefinitely, to diffuse and mix readily with other gases, to have definite relations of volume, temperature, and pressure, and to condense or liquefy at low temperatures or under sufficient pressure. (Grant & Hackh's Chemical Dictionary, 5th ed)

Related Publications

J Guo, and J J Liao, and J K Preston, and H H Batjer
January 1989, The Journal of cardiovascular surgery,
J Guo, and J J Liao, and J K Preston, and H H Batjer
November 1996, Magnetic resonance in medicine,
J Guo, and J J Liao, and J K Preston, and H H Batjer
September 1993, American heart journal,
J Guo, and J J Liao, and J K Preston, and H H Batjer
February 2001, The Journal of surgical research,
J Guo, and J J Liao, and J K Preston, and H H Batjer
April 1988, Archives of surgery (Chicago, Ill. : 1960),
J Guo, and J J Liao, and J K Preston, and H H Batjer
September 2004, Transplantation,
J Guo, and J J Liao, and J K Preston, and H H Batjer
May 1984, Journal of neurosurgery,
J Guo, and J J Liao, and J K Preston, and H H Batjer
December 1994, The American journal of physiology,
J Guo, and J J Liao, and J K Preston, and H H Batjer
May 2010, Perfusion,
Copied contents to your clipboard!