Quantitative structure-toxicity relationships and volume fraction analyses for selected esters. 1995

J S Jaworska, and R S Hunter, and T W Schultz
Environmental Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6034, USA.

The acute toxicity of aliphatic and aromatic mono and diesters in two eucaryotic organisms was compared. The test systems were the static 2-d Tetrahymena pyriformis 50% population growth impairment (IGC50(-1)) assay, and the flow-through 4-d Pimephales promelas 50% mortality (LC50(-1)) assay. In ciliates, esters act via the nonpolar narcosis mechanism of toxic action. This was indicated by: the high quality 1-octanol/water partition coefficient (log Kow) dependent quantitative structure-activity relationship (QSAR), log IGC50(-1) = 0.79 (log Kow) - 1.93, n = 15, r2 = 0.945, s = 0.22, f = 222.37 Pr > f = 0.001); volume fraction (Vf) (0.8e-02); and "a" coefficient (0.3) which are not different from other nonpolar narcotics. In vivo hydrolysis in Tetrahymena appears to be insignificant. However, in fish, presumably because of more active esterases, in vivo hydrolysis is significant and leads to greater toxicity of esters than observed for nonpolar narcotics. Moreover, it leads to a unique high quality QSAR, log LC50(-1) = 0.64 (log Kow) - 0.64, n = 14, r2 = 0.945, s = 0.22, f = 207.08, Pr > f = 0.0001). Due to in vivo hydrolysis, a nonreducing concentration gradient is formed between water and fish. Therefore, the fish take up more toxicant as compared to a situation that leads to thermodynamic equilibrium. Additional information about the mechanism of ester toxicity in fish was gained by applying corrections for hydrolysis in volume fraction analyses. The corrected Vf (0.6e-02) is very close to the one found for nonpolar narcotics (0.7e-02).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D004952 Esters Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. Ester
D005591 Chemical Fractionation Separation of a mixture in successive stages, each stage removing from the mixture some proportion of one of the substances, for example by differential solubility in water-solvent mixtures. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Fractionation, Chemical,Chemical Fractionations,Fractionations, Chemical
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013769 Tetrahymena pyriformis A species of ciliate protozoa used extensively in genetic research. Tetrahymena pyriformi,pyriformi, Tetrahymena
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

J S Jaworska, and R S Hunter, and T W Schultz
January 1993, SAR and QSAR in environmental research,
J S Jaworska, and R S Hunter, and T W Schultz
December 1980, Die Pharmazie,
J S Jaworska, and R S Hunter, and T W Schultz
January 2000, Ecotoxicology and environmental safety,
J S Jaworska, and R S Hunter, and T W Schultz
March 1999, Environmental toxicology and pharmacology,
J S Jaworska, and R S Hunter, and T W Schultz
June 2000, Bulletin of environmental contamination and toxicology,
J S Jaworska, and R S Hunter, and T W Schultz
April 1999, Bulletin of environmental contamination and toxicology,
J S Jaworska, and R S Hunter, and T W Schultz
September 1998, Bulletin of environmental contamination and toxicology,
J S Jaworska, and R S Hunter, and T W Schultz
April 1989, Ecotoxicology and environmental safety,
J S Jaworska, and R S Hunter, and T W Schultz
July 1999, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology,
J S Jaworska, and R S Hunter, and T W Schultz
January 1980, Archives of environmental contamination and toxicology,
Copied contents to your clipboard!